Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intid | Unicode version |
Description: The intersection of all sets to which a set belongs is the singleton of that set. (Contributed by NM, 5-Jun-2009.) |
Ref | Expression |
---|---|
intid.1 |
Ref | Expression |
---|---|
intid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 4693 | . . 3 | |
2 | eleq2 2530 | . . . 4 | |
3 | intid.1 | . . . . 5 | |
4 | 3 | snid 4057 | . . . 4 |
5 | 2, 4 | intmin3 4315 | . . 3 |
6 | 1, 5 | ax-mp 5 | . 2 |
7 | 3 | elintab 4297 | . . . 4 |
8 | id 22 | . . . 4 | |
9 | 7, 8 | mpgbir 1622 | . . 3 |
10 | snssi 4174 | . . 3 | |
11 | 9, 10 | ax-mp 5 | . 2 |
12 | 6, 11 | eqssi 3519 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
e. wcel 1818 { cab 2442 cvv 3109
C_ wss 3475 { csn 4029 |^| cint 4286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-sn 4030 df-pr 4032 df-int 4287 |
Copyright terms: Public domain | W3C validator |