MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intirr Unicode version

Theorem intirr 5390
Description: Two ways of saying a relation is irreflexive. Definition of irreflexivity in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
intirr
Distinct variable group:   ,

Proof of Theorem intirr
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 incom 3690 . . . 4
21eqeq1i 2464 . . 3
3 disj2 3874 . . 3
4 reli 5135 . . . 4
5 ssrel 5096 . . . 4
64, 5ax-mp 5 . . 3
72, 3, 63bitri 271 . 2
8 equcom 1794 . . . . 5
9 vex 3112 . . . . . 6
109ideq 5160 . . . . 5
11 df-br 4453 . . . . 5
128, 10, 113bitr2i 273 . . . 4
13 opex 4716 . . . . . . 7
1413biantrur 506 . . . . . 6
15 eldif 3485 . . . . . 6
1614, 15bitr4i 252 . . . . 5
17 df-br 4453 . . . . 5
1816, 17xchnxbir 309 . . . 4
1912, 18imbi12i 326 . . 3
20192albii 1641 . 2
21 nfv 1707 . . . 4
22 breq2 4456 . . . . 5
2322notbid 294 . . . 4
2421, 23equsal 2036 . . 3
2524albii 1640 . 2
267, 20, 253bitr2i 273 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  <->wb 184  /\wa 369  A.wal 1393  =wceq 1395  e.wcel 1818   cvv 3109  \cdif 3472  i^icin 3474  C_wss 3475   c0 3784  <.cop 4035   class class class wbr 4452   cid 4795  Relwrel 5009
This theorem is referenced by:  hartogslem1  7988  hausdiag  20146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-br 4453  df-opab 4511  df-id 4800  df-xp 5010  df-rel 5011
  Copyright terms: Public domain W3C validator