Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intirr | Unicode version |
Description: Two ways of saying a relation is irreflexive. Definition of irreflexivity in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
intirr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 3690 | . . . 4 | |
2 | 1 | eqeq1i 2464 | . . 3 |
3 | disj2 3874 | . . 3 | |
4 | reli 5135 | . . . 4 | |
5 | ssrel 5096 | . . . 4 | |
6 | 4, 5 | ax-mp 5 | . . 3 |
7 | 2, 3, 6 | 3bitri 271 | . 2 |
8 | equcom 1794 | . . . . 5 | |
9 | vex 3112 | . . . . . 6 | |
10 | 9 | ideq 5160 | . . . . 5 |
11 | df-br 4453 | . . . . 5 | |
12 | 8, 10, 11 | 3bitr2i 273 | . . . 4 |
13 | opex 4716 | . . . . . . 7 | |
14 | 13 | biantrur 506 | . . . . . 6 |
15 | eldif 3485 | . . . . . 6 | |
16 | 14, 15 | bitr4i 252 | . . . . 5 |
17 | df-br 4453 | . . . . 5 | |
18 | 16, 17 | xchnxbir 309 | . . . 4 |
19 | 12, 18 | imbi12i 326 | . . 3 |
20 | 19 | 2albii 1641 | . 2 |
21 | nfv 1707 | . . . 4 | |
22 | breq2 4456 | . . . . 5 | |
23 | 22 | notbid 294 | . . . 4 |
24 | 21, 23 | equsal 2036 | . . 3 |
25 | 24 | albii 1640 | . 2 |
26 | 7, 20, 25 | 3bitr2i 273 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 A. wal 1393
= wceq 1395 e. wcel 1818 cvv 3109
\ cdif 3472 i^i cin 3474 C_ wss 3475
c0 3784 <. cop 4035 class class class wbr 4452
cid 4795
Rel wrel 5009 |
This theorem is referenced by: hartogslem1 7988 hausdiag 20146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 |
Copyright terms: Public domain | W3C validator |