MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intmin2 Unicode version

Theorem intmin2 4314
Description: Any set is the smallest of all sets that include it. (Contributed by NM, 20-Sep-2003.)
Hypothesis
Ref Expression
intmin2.1
Assertion
Ref Expression
intmin2
Distinct variable group:   ,

Proof of Theorem intmin2
StepHypRef Expression
1 rabab 3127 . . 3
21inteqi 4290 . 2
3 intmin2.1 . . 3
4 intmin 4306 . . 3
53, 4ax-mp 5 . 2
62, 5eqtr3i 2488 1
Colors of variables: wff setvar class
Syntax hints:  =wceq 1395  e.wcel 1818  {cab 2442  {crab 2811   cvv 3109  C_wss 3475  |^|cint 4286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rab 2816  df-v 3111  df-in 3482  df-ss 3489  df-int 4287
  Copyright terms: Public domain W3C validator