Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intmin4 | Unicode version |
Description: Elimination of a conjunct in a class intersection. (Contributed by NM, 31-Jul-2006.) |
Ref | Expression |
---|---|
intmin4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssintab 4303 | . . . 4 | |
2 | simpr 461 | . . . . . . . 8 | |
3 | ancr 549 | . . . . . . . 8 | |
4 | 2, 3 | impbid2 204 | . . . . . . 7 |
5 | 4 | imbi1d 317 | . . . . . 6 |
6 | 5 | alimi 1633 | . . . . 5 |
7 | albi 1639 | . . . . 5 | |
8 | 6, 7 | syl 16 | . . . 4 |
9 | 1, 8 | sylbi 195 | . . 3 |
10 | vex 3112 | . . . 4 | |
11 | 10 | elintab 4297 | . . 3 |
12 | 10 | elintab 4297 | . . 3 |
13 | 9, 11, 12 | 3bitr4g 288 | . 2 |
14 | 13 | eqrdv 2454 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 = wceq 1395
e. wcel 1818 { cab 2442 C_ wss 3475
|^| cint 4286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-v 3111 df-in 3482 df-ss 3489 df-int 4287 |
Copyright terms: Public domain | W3C validator |