Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intminss | Unicode version |
Description: Under subset ordering, the intersection of a restricted class abstraction is less than or equal to any of its members. (Contributed by NM, 7-Sep-2013.) |
Ref | Expression |
---|---|
intminss.1 |
Ref | Expression |
---|---|
intminss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intminss.1 | . . 3 | |
2 | 1 | elrab 3257 | . 2 |
3 | intss1 4301 | . 2 | |
4 | 2, 3 | sylbir 213 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
{ crab 2811 C_ wss 3475 |^| cint 4286 |
This theorem is referenced by: onintss 4933 knatar 6253 cardonle 8359 coftr 8674 wuncss 9144 ist1-3 19850 sigagenss 28149 nodenselem5 29445 nobndlem6 29457 nobndlem8 29459 fneint 30166 igenmin 30461 pclclN 35615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-rab 2816 df-v 3111 df-in 3482 df-ss 3489 df-int 4287 |
Copyright terms: Public domain | W3C validator |