Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intnand | Unicode version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
Ref | Expression |
---|---|
intnand.1 |
Ref | Expression |
---|---|
intnand |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnand.1 | . 2 | |
2 | simpr 461 | . 2 | |
3 | 1, 2 | nsyl 121 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 |
This theorem is referenced by: csbxp 5086 poxp 6912 suppss2 6953 supp0cosupp0 6958 imacosupp 6959 cdadom1 8587 cfsuc 8658 axunnd 8992 difreicc 11681 fzpreddisj 11758 fzp1nel 11791 swrd0 12658 repsundef 12743 cshnz 12763 fprodntriv 13749 bitsfzo 14085 bitsmod 14086 qredeu 14248 divnumden 14281 divdenle 14282 pythagtriplem4 14343 pythagtriplem8 14347 pythagtriplem9 14348 isnsgrp 15915 isnmnd 15924 mgm2nsgrplem2 16037 0ringnnzr 17917 frlmssuvc2 18826 frlmssuvc2OLD 18828 mamufacex 18891 mavmulsolcl 19053 maducoeval2 19142 opnfbas 20343 lgsneg 23594 usgra2edg1 24383 nbusgra 24428 cyclnspth 24631 frgra2v 24999 4cycl2vnunb 25017 2spotdisj 25061 2spotmdisj 25068 numclwwlk3lem 25108 gcdnncl 27607 divnumden2 27609 poseq 29333 nodenselem8 29448 itg2addnclem2 30067 rmspecnonsq 30843 rpnnen3lem 30973 phisum 31159 gtnelicc 31533 limcrecl 31635 sumnnodd 31636 jumpncnp 31701 stoweidlem39 31821 stoweidlem59 31841 fourierdlem12 31901 usg2edgneu 32412 pgrpgt2nabl 32959 lindslinindsimp1 33058 lmod1zrnlvec 33095 elpadd0 35533 dihatlat 37061 dihjatcclem1 37145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |