Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intnanr | Unicode version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.) |
Ref | Expression |
---|---|
intnan.1 |
Ref | Expression |
---|---|
intnanr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnan.1 | . 2 | |
2 | simpl 457 | . 2 | |
3 | 1, 2 | mto 176 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 /\ wa 369 |
This theorem is referenced by: falantru 1421 rab0 3806 co02 5526 xrltnr 11359 pnfnlt 11366 nltmnf 11367 smu02 14137 0g0 15890 axlowdimlem13 24257 axlowdimlem16 24260 axlowdim 24264 rusgra0edg 24955 signstfvneq0 28529 linedegen 29793 eldioph4b 30745 iblempty 31764 notatnand 32091 padd02 35536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |