MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intnanr Unicode version

Theorem intnanr 915
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.)
Hypothesis
Ref Expression
intnan.1
Assertion
Ref Expression
intnanr

Proof of Theorem intnanr
StepHypRef Expression
1 intnan.1 . 2
2 simpl 457 . 2
31, 2mto 176 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  /\wa 369
This theorem is referenced by:  falantru  1421  rab0  3806  co02  5526  xrltnr  11359  pnfnlt  11366  nltmnf  11367  smu02  14137  0g0  15890  axlowdimlem13  24257  axlowdimlem16  24260  axlowdim  24264  rusgra0edg  24955  signstfvneq0  28529  linedegen  29793  eldioph4b  30745  iblempty  31764  notatnand  32091  padd02  35536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
  Copyright terms: Public domain W3C validator