Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intpr | Unicode version |
Description: The intersection of a pair is the intersection of its members. Theorem 71 of [Suppes] p. 42. (Contributed by NM, 14-Oct-1999.) |
Ref | Expression |
---|---|
intpr.1 | |
intpr.2 |
Ref | Expression |
---|---|
intpr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.26 1680 | . . . 4 | |
2 | vex 3112 | . . . . . . . 8 | |
3 | 2 | elpr 4047 | . . . . . . 7 |
4 | 3 | imbi1i 325 | . . . . . 6 |
5 | jaob 783 | . . . . . 6 | |
6 | 4, 5 | bitri 249 | . . . . 5 |
7 | 6 | albii 1640 | . . . 4 |
8 | intpr.1 | . . . . . 6 | |
9 | 8 | clel4 3239 | . . . . 5 |
10 | intpr.2 | . . . . . 6 | |
11 | 10 | clel4 3239 | . . . . 5 |
12 | 9, 11 | anbi12i 697 | . . . 4 |
13 | 1, 7, 12 | 3bitr4i 277 | . . 3 |
14 | vex 3112 | . . . 4 | |
15 | 14 | elint 4292 | . . 3 |
16 | elin 3686 | . . 3 | |
17 | 13, 15, 16 | 3bitr4i 277 | . 2 |
18 | 17 | eqriv 2453 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 \/ wo 368
/\ wa 369 A. wal 1393 = wceq 1395
e. wcel 1818 cvv 3109
i^i cin 3474 { cpr 4031 |^| cint 4286 |
This theorem is referenced by: intprg 4321 uniintsn 4324 op1stb 4722 fiint 7817 shincli 26280 chincli 26378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-un 3480 df-in 3482 df-sn 4030 df-pr 4032 df-int 4287 |
Copyright terms: Public domain | W3C validator |