Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intprg | Unicode version |
Description: The intersection of a pair is the intersection of its members. Closed form of intpr 4320. Theorem 71 of [Suppes] p. 42. (Contributed by FL, 27-Apr-2008.) |
Ref | Expression |
---|---|
intprg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1 4109 | . . . 4 | |
2 | 1 | inteqd 4291 | . . 3 |
3 | ineq1 3692 | . . 3 | |
4 | 2, 3 | eqeq12d 2479 | . 2 |
5 | preq2 4110 | . . . 4 | |
6 | 5 | inteqd 4291 | . . 3 |
7 | ineq2 3693 | . . 3 | |
8 | 6, 7 | eqeq12d 2479 | . 2 |
9 | vex 3112 | . . 3 | |
10 | vex 3112 | . . 3 | |
11 | 9, 10 | intpr 4320 | . 2 |
12 | 4, 8, 11 | vtocl2g 3171 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 i^i cin 3474
{ cpr 4031 |^| cint 4286 |
This theorem is referenced by: intsng 4322 inelfi 7898 mreincl 14996 subrgin 17452 lssincl 17611 incld 19544 difelsiga 28133 inidl 30427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-v 3111 df-un 3480 df-in 3482 df-sn 4030 df-pr 4032 df-int 4287 |
Copyright terms: Public domain | W3C validator |