MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intprg Unicode version

Theorem intprg 4321
Description: The intersection of a pair is the intersection of its members. Closed form of intpr 4320. Theorem 71 of [Suppes] p. 42. (Contributed by FL, 27-Apr-2008.)
Assertion
Ref Expression
intprg

Proof of Theorem intprg
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 preq1 4109 . . . 4
21inteqd 4291 . . 3
3 ineq1 3692 . . 3
42, 3eqeq12d 2479 . 2
5 preq2 4110 . . . 4
65inteqd 4291 . . 3
7 ineq2 3693 . . 3
86, 7eqeq12d 2479 . 2
9 vex 3112 . . 3
10 vex 3112 . . 3
119, 10intpr 4320 . 2
124, 8, 11vtocl2g 3171 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  =wceq 1395  e.wcel 1818  i^icin 3474  {cpr 4031  |^|cint 4286
This theorem is referenced by:  intsng  4322  inelfi  7898  mreincl  14996  subrgin  17452  lssincl  17611  incld  19544  difelsiga  28133  inidl  30427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-v 3111  df-un 3480  df-in 3482  df-sn 4030  df-pr 4032  df-int 4287
  Copyright terms: Public domain W3C validator