MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intsng Unicode version

Theorem intsng 4322
Description: Intersection of a singleton. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
intsng

Proof of Theorem intsng
StepHypRef Expression
1 dfsn2 4042 . . 3
21inteqi 4290 . 2
3 intprg 4321 . . . 4
43anidms 645 . . 3
5 inidm 3706 . . 3
64, 5syl6eq 2514 . 2
72, 6syl5eq 2510 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  =wceq 1395  e.wcel 1818  i^icin 3474  {csn 4029  {cpr 4031  |^|cint 4286
This theorem is referenced by:  intsn  4323  riinint  5264  elrfi  30626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-v 3111  df-un 3480  df-in 3482  df-sn 4030  df-pr 4032  df-int 4287
  Copyright terms: Public domain W3C validator