Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intss1 | Unicode version |
Description: An element of a class includes the intersection of the class. Exercise 4 of [TakeutiZaring] p. 44 (with correction), generalized to classes. (Contributed by NM, 18-Nov-1995.) |
Ref | Expression |
---|---|
intss1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3112 | . . . 4 | |
2 | 1 | elint 4292 | . . 3 |
3 | eleq1 2529 | . . . . . 6 | |
4 | eleq2 2530 | . . . . . 6 | |
5 | 3, 4 | imbi12d 320 | . . . . 5 |
6 | 5 | spcgv 3194 | . . . 4 |
7 | 6 | pm2.43a 49 | . . 3 |
8 | 2, 7 | syl5bi 217 | . 2 |
9 | 8 | ssrdv 3509 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 A. wal 1393
= wceq 1395 e. wcel 1818 C_ wss 3475
|^| cint 4286 |
This theorem is referenced by: intminss 4313 intmin3 4315 intab 4317 int0el 4318 trint0 4562 intex 4608 oneqmini 4934 sorpssint 6590 onint 6630 onssmin 6632 onnmin 6638 nnawordex 7305 dffi2 7903 inficl 7905 dffi3 7911 tcmin 8193 tc2 8194 rankr1ai 8237 rankuni2b 8292 tcrank 8323 harval2 8399 cfflb 8660 fin23lem20 8738 fin23lem38 8750 isf32lem2 8755 intwun 9134 inttsk 9173 intgru 9213 dfnn2 10574 dfuzi 10978 mremre 15001 isacs1i 15054 mrelatglb 15814 cycsubg 16229 efgrelexlemb 16768 efgcpbllemb 16773 frgpuplem 16790 cssmre 18724 toponmre 19594 1stcfb 19946 ptcnplem 20122 fbssfi 20338 uffix 20422 ufildom1 20427 alexsublem 20544 alexsubALTlem4 20550 tmdgsum2 20595 bcth3 21770 limciun 22298 aalioulem3 22730 shintcli 26247 shsval2i 26305 ococin 26326 chsupsn 26331 insiga 28137 mclsssvlem 28922 mclsax 28929 mclsind 28930 dfrtrcl2 29071 untint 29084 dfon2lem8 29222 dfon2lem9 29223 sltval2 29416 sltres 29424 nodenselem7 29447 nocvxminlem 29450 nobndup 29460 nobnddown 29461 clsint2 30147 topmeet 30182 topjoin 30183 heibor1lem 30305 ismrcd1 30630 mzpincl 30666 mzpf 30668 mzpindd 30678 rgspnmin 31120 trclub 37784 trclubg 37785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-in 3482 df-ss 3489 df-int 4287 |
Copyright terms: Public domain | W3C validator |