Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intun | Unicode version |
Description: The class intersection of the union of two classes. Theorem 78 of [Suppes] p. 42. (Contributed by NM, 22-Sep-2002.) |
Ref | Expression |
---|---|
intun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.26 1680 | . . . 4 | |
2 | elun 3644 | . . . . . . 7 | |
3 | 2 | imbi1i 325 | . . . . . 6 |
4 | jaob 783 | . . . . . 6 | |
5 | 3, 4 | bitri 249 | . . . . 5 |
6 | 5 | albii 1640 | . . . 4 |
7 | vex 3112 | . . . . . 6 | |
8 | 7 | elint 4292 | . . . . 5 |
9 | 7 | elint 4292 | . . . . 5 |
10 | 8, 9 | anbi12i 697 | . . . 4 |
11 | 1, 6, 10 | 3bitr4i 277 | . . 3 |
12 | 7 | elint 4292 | . . 3 |
13 | elin 3686 | . . 3 | |
14 | 11, 12, 13 | 3bitr4i 277 | . 2 |
15 | 14 | eqriv 2453 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 \/ wo 368
/\ wa 369 A. wal 1393 = wceq 1395
e. wcel 1818 u. cun 3473 i^i cin 3474
|^| cint 4286 |
This theorem is referenced by: intunsn 4326 riinint 5264 fiin 7902 elfiun 7910 elrfi 30626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-un 3480 df-in 3482 df-int 4287 |
Copyright terms: Public domain | W3C validator |