Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intwun | Unicode version |
Description: The intersection of a collection of weak universes is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
intwun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 457 | . . . . . 6 | |
2 | 1 | sselda 3503 | . . . . 5 |
3 | wuntr 9104 | . . . . 5 | |
4 | 2, 3 | syl 16 | . . . 4 |
5 | 4 | ralrimiva 2871 | . . 3 |
6 | trint 4560 | . . 3 | |
7 | 5, 6 | syl 16 | . 2 |
8 | 2 | wun0 9117 | . . . . 5 |
9 | 8 | ralrimiva 2871 | . . . 4 |
10 | 0ex 4582 | . . . . 5 | |
11 | 10 | elint2 4293 | . . . 4 |
12 | 9, 11 | sylibr 212 | . . 3 |
13 | ne0i 3790 | . . 3 | |
14 | 12, 13 | syl 16 | . 2 |
15 | 2 | adantlr 714 | . . . . . . 7 |
16 | intss1 4301 | . . . . . . . . . 10 | |
17 | 16 | adantl 466 | . . . . . . . . 9 |
18 | 17 | sselda 3503 | . . . . . . . 8 |
19 | 18 | an32s 804 | . . . . . . 7 |
20 | 15, 19 | wununi 9105 | . . . . . 6 |
21 | 20 | ralrimiva 2871 | . . . . 5 |
22 | vex 3112 | . . . . . . 7 | |
23 | 22 | uniex 6596 | . . . . . 6 |
24 | 23 | elint2 4293 | . . . . 5 |
25 | 21, 24 | sylibr 212 | . . . 4 |
26 | 15, 19 | wunpw 9106 | . . . . . 6 |
27 | 26 | ralrimiva 2871 | . . . . 5 |
28 | 22 | pwex 4635 | . . . . . 6 |
29 | 28 | elint2 4293 | . . . . 5 |
30 | 27, 29 | sylibr 212 | . . . 4 |
31 | 15 | adantlr 714 | . . . . . . . 8 |
32 | 19 | adantlr 714 | . . . . . . . 8 |
33 | 16 | adantl 466 | . . . . . . . . . 10 |
34 | 33 | sselda 3503 | . . . . . . . . 9 |
35 | 34 | an32s 804 | . . . . . . . 8 |
36 | 31, 32, 35 | wunpr 9108 | . . . . . . 7 |
37 | 36 | ralrimiva 2871 | . . . . . 6 |
38 | prex 4694 | . . . . . . 7 | |
39 | 38 | elint2 4293 | . . . . . 6 |
40 | 37, 39 | sylibr 212 | . . . . 5 |
41 | 40 | ralrimiva 2871 | . . . 4 |
42 | 25, 30, 41 | 3jca 1176 | . . 3 |
43 | 42 | ralrimiva 2871 | . 2 |
44 | simpr 461 | . . . 4 | |
45 | intex 4608 | . . . 4 | |
46 | 44, 45 | sylib 196 | . . 3 |
47 | iswun 9103 | . . 3 | |
48 | 46, 47 | syl 16 | . 2 |
49 | 7, 14, 43, 48 | mpbir3and 1179 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 e. wcel 1818
=/= wne 2652 A. wral 2807 cvv 3109
C_ wss 3475 c0 3784 ~P cpw 4012 { cpr 4031
U. cuni 4249 |^| cint 4286 Tr wtr 4545
cwun 9099 |
This theorem is referenced by: wunccl 9143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-pw 4014 df-sn 4030 df-pr 4032 df-uni 4250 df-int 4287 df-tr 4546 df-wun 9101 |
Copyright terms: Public domain | W3C validator |