Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inundif | Unicode version |
Description: The intersection and class difference of a class with another class unite to give the original class. (Contributed by Paul Chapman, 5-Jun-2009.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
inundif |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3686 | . . . 4 | |
2 | eldif 3485 | . . . 4 | |
3 | 1, 2 | orbi12i 521 | . . 3 |
4 | pm4.42 960 | . . 3 | |
5 | 3, 4 | bitr4i 252 | . 2 |
6 | 5 | uneqri 3645 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 \/ wo 368
/\ wa 369 = wceq 1395 e. wcel 1818
\ cdif 3472 u. cun 3473 i^i cin 3474 |
This theorem is referenced by: resasplit 5760 fresaun 5761 fresaunres2 5762 ixpfi2 7838 hashun3 12452 prmreclem2 14435 mvdco 16470 sylow2a 16639 ablfac1eu 17124 basdif0 19454 neitr 19681 cmpfi 19908 ptbasfi 20082 ptcnplem 20122 fin1aufil 20433 ismbl2 21938 volinun 21956 voliunlem2 21961 mbfeqalem 22049 itg2cnlem2 22169 dvres2lem 22314 imadifxp 27458 ofpreima2 27508 partfun 27516 resf1o 27553 measun 28182 measunl 28187 sibfof 28282 probdif 28359 mthmpps 28942 radcnvrat 31195 sumnnodd 31636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 |
Copyright terms: Public domain | W3C validator |