Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inuni | Unicode version |
Description: The intersection of a union with a class is equal to the union of the intersections of each element of with . (Contributed by FL, 24-Mar-2007.) |
Ref | Expression |
---|---|
inuni |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni2 4253 | . . . . 5 | |
2 | 1 | anbi1i 695 | . . . 4 |
3 | elin 3686 | . . . 4 | |
4 | ancom 450 | . . . . . . . 8 | |
5 | r19.41v 3009 | . . . . . . . 8 | |
6 | 4, 5 | bitr4i 252 | . . . . . . 7 |
7 | 6 | exbii 1667 | . . . . . 6 |
8 | rexcom4 3129 | . . . . . 6 | |
9 | 7, 8 | bitr4i 252 | . . . . 5 |
10 | vex 3112 | . . . . . . . . . 10 | |
11 | 10 | inex1 4593 | . . . . . . . . 9 |
12 | eleq2 2530 | . . . . . . . . 9 | |
13 | 11, 12 | ceqsexv 3146 | . . . . . . . 8 |
14 | elin 3686 | . . . . . . . 8 | |
15 | 13, 14 | bitri 249 | . . . . . . 7 |
16 | 15 | rexbii 2959 | . . . . . 6 |
17 | r19.41v 3009 | . . . . . 6 | |
18 | 16, 17 | bitri 249 | . . . . 5 |
19 | 9, 18 | bitri 249 | . . . 4 |
20 | 2, 3, 19 | 3bitr4i 277 | . . 3 |
21 | eluniab 4260 | . . 3 | |
22 | 20, 21 | bitr4i 252 | . 2 |
23 | 22 | eqriv 2453 | 1 |
Colors of variables: wff setvar class |
Syntax hints: /\ wa 369 = wceq 1395
E. wex 1612 e. wcel 1818 { cab 2442
E. wrex 2808 i^i cin 3474 U. cuni 4249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-v 3111 df-in 3482 df-uni 4250 |
Copyright terms: Public domain | W3C validator |