Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > invdisj | Unicode version |
Description: If there is a function
( ) such that ( ) = x for all
e. ( x ) , then the sets
( x ) for distinct are
disjoint. (Contributed by Mario Carneiro,
10-Dec-2016.) |
Ref | Expression |
---|---|
invdisj |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfra2 2844 | . . 3 | |
2 | df-ral 2812 | . . . . 5 | |
3 | rsp 2823 | . . . . . . . . 9 | |
4 | eqcom 2466 | . . . . . . . . 9 | |
5 | 3, 4 | syl6ib 226 | . . . . . . . 8 |
6 | 5 | imim2i 14 | . . . . . . 7 |
7 | 6 | impd 431 | . . . . . 6 |
8 | 7 | alimi 1633 | . . . . 5 |
9 | 2, 8 | sylbi 195 | . . . 4 |
10 | mo2icl 3278 | . . . 4 | |
11 | 9, 10 | syl 16 | . . 3 |
12 | 1, 11 | alrimi 1877 | . 2 |
13 | dfdisj2 4424 | . 2 | |
14 | 12, 13 | sylibr 212 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
A. wal 1393 = wceq 1395 e. wcel 1818
E* wmo 2283 A. wral 2807 Disj_ wdisj 4422 |
This theorem is referenced by: disjxwrd 12680 ackbijnn 13640 incexc2 13650 itg1addlem1 22099 musum 23467 lgsquadlem1 23629 lgsquadlem2 23630 disjabrex 27443 disjabrexf 27444 phisum 31159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rmo 2815 df-v 3111 df-disj 4423 |
Copyright terms: Public domain | W3C validator |