Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ioodisj | Unicode version |
Description: If the upper bound of one open interval is less than or equal to the lower bound of the other, the intervals are disjoint. (Contributed by Jeff Hankins, 13-Jul-2009.) |
Ref | Expression |
---|---|
ioodisj |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpllr 760 | . . . . . 6 | |
2 | iooss1 11593 | . . . . . 6 | |
3 | 1, 2 | sylancom 667 | . . . . 5 |
4 | ioossicc 11639 | . . . . 5 | |
5 | 3, 4 | syl6ss 3515 | . . . 4 |
6 | sslin 3723 | . . . 4 | |
7 | 5, 6 | syl 16 | . . 3 |
8 | simplll 759 | . . . 4 | |
9 | simplrr 762 | . . . 4 | |
10 | df-ioo 11562 | . . . . 5 | |
11 | df-icc 11565 | . . . . 5 | |
12 | xrlenlt 9673 | . . . . 5 | |
13 | 10, 11, 12 | ixxdisj 11573 | . . . 4 |
14 | 8, 1, 9, 13 | syl3anc 1228 | . . 3 |
15 | 7, 14 | sseqtrd 3539 | . 2 |
16 | ss0 3816 | . 2 | |
17 | 15, 16 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 i^i cin 3474
C_ wss 3475 c0 3784 class class class wbr 4452
(class class class)co 6296 cxr 9648
clt 9649 cle 9650 cioo 11558
cicc 11561 |
This theorem is referenced by: reconnlem1 21331 dyaddisjlem 22004 itgsplitioo 22244 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-pre-lttri 9587 ax-pre-lttrn 9588 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-1st 6800 df-2nd 6801 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-ioo 11562 df-icc 11565 |
Copyright terms: Public domain | W3C validator |