Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iota2df | Unicode version |
Description: A condition that allows us to represent "the unique element such that " with a class expression . (Contributed by NM, 30-Dec-2014.) |
Ref | Expression |
---|---|
iota2df.1 | |
iota2df.2 | |
iota2df.3 | |
iota2df.4 | |
iota2df.5 | |
iota2df.6 |
Ref | Expression |
---|---|
iota2df |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iota2df.1 | . 2 | |
2 | iota2df.3 | . . 3 | |
3 | simpr 461 | . . . 4 | |
4 | 3 | eqeq2d 2471 | . . 3 |
5 | 2, 4 | bibi12d 321 | . 2 |
6 | iota2df.2 | . . 3 | |
7 | iota1 5570 | . . 3 | |
8 | 6, 7 | syl 16 | . 2 |
9 | iota2df.4 | . 2 | |
10 | iota2df.6 | . 2 | |
11 | iota2df.5 | . . 3 | |
12 | nfiota1 5558 | . . . . 5 | |
13 | 12 | a1i 11 | . . . 4 |
14 | 13, 10 | nfeqd 2626 | . . 3 |
15 | 11, 14 | nfbid 1933 | . 2 |
16 | 1, 5, 8, 9, 10, 15 | vtocldf 3158 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 F/ wnf 1616
e. wcel 1818 E! weu 2282 F/_ wnfc 2605
iota cio 5554 |
This theorem is referenced by: iota2d 5581 iota2 5582 riota2df 6278 opiota 6859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-v 3111 df-sbc 3328 df-un 3480 df-sn 4030 df-pr 4032 df-uni 4250 df-iota 5556 |
Copyright terms: Public domain | W3C validator |