MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iota4 Unicode version

Theorem iota4 5574
Description: Theorem *14.22 in [WhiteheadRussell] p. 190. (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
iota4

Proof of Theorem iota4
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-eu 2286 . 2
2 bi2 198 . . . . . 6
32alimi 1633 . . . . 5
4 sb2 2093 . . . . 5
53, 4syl 16 . . . 4
6 iotaval 5567 . . . . . 6
76eqcomd 2465 . . . . 5
8 dfsbcq2 3330 . . . . 5
97, 8syl 16 . . . 4
105, 9mpbid 210 . . 3
1110exlimiv 1722 . 2
121, 11sylbi 195 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  A.wal 1393  =wceq 1395  E.wex 1612  [wsb 1739  E!weu 2282  [.wsbc 3327  iotacio 5554
This theorem is referenced by:  iota4an  5575  iotacl  5579  pm14.24  31339  sbiota1  31341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rex 2813  df-v 3111  df-sbc 3328  df-un 3480  df-sn 4030  df-pr 4032  df-uni 4250  df-iota 5556
  Copyright terms: Public domain W3C validator