MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotabi Unicode version

Theorem iotabi 5565
Description: Equivalence theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.)
Assertion
Ref Expression
iotabi

Proof of Theorem iotabi
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 abbi 2588 . . . . . 6
21biimpi 194 . . . . 5
32eqeq1d 2459 . . . 4
43abbidv 2593 . . 3
54unieqd 4259 . 2
6 df-iota 5556 . 2
7 df-iota 5556 . 2
85, 6, 73eqtr4g 2523 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  A.wal 1393  =wceq 1395  {cab 2442  {csn 4029  U.cuni 4249  iotacio 5554
This theorem is referenced by:  iotabidv  5577  iotabii  5578  eusvobj1  6290  iotasbcq  31344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rex 2813  df-uni 4250  df-iota 5556
  Copyright terms: Public domain W3C validator