Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iotacl | Unicode version |
Description: Membership law for
descriptions.
This can useful for expanding an unbounded iota-based definition (see df-iota 5556). If you have a bounded iota-based definition, riotacl2 6271 may be useful. (Contributed by Andrew Salmon, 1-Aug-2011.) |
Ref | Expression |
---|---|
iotacl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iota4 5574 | . 2 | |
2 | df-sbc 3328 | . 2 | |
3 | 1, 2 | sylib 196 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 e. wcel 1818
E! weu 2282 { cab 2442 [. wsbc 3327
iota cio 5554 |
This theorem is referenced by: riotacl2 6271 opiota 6859 eroprf 7428 iunfictbso 8516 isf32lem9 8762 psgnvali 16533 fourierdlem36 31925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-rex 2813 df-v 3111 df-sbc 3328 df-un 3480 df-sn 4030 df-pr 4032 df-uni 4250 df-iota 5556 |
Copyright terms: Public domain | W3C validator |