Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iotaeq | Unicode version |
Description: Equality theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.) |
Ref | Expression |
---|---|
iotaeq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drsb1 2118 | . . . . . . 7 | |
2 | df-clab 2443 | . . . . . . 7 | |
3 | df-clab 2443 | . . . . . . 7 | |
4 | 1, 2, 3 | 3bitr4g 288 | . . . . . 6 |
5 | 4 | eqrdv 2454 | . . . . 5 |
6 | 5 | eqeq1d 2459 | . . . 4 |
7 | 6 | abbidv 2593 | . . 3 |
8 | 7 | unieqd 4259 | . 2 |
9 | df-iota 5556 | . 2 | |
10 | df-iota 5556 | . 2 | |
11 | 8, 9, 10 | 3eqtr4g 2523 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 A. wal 1393
= wceq 1395 [ wsb 1739 e. wcel 1818
{ cab 2442 { csn 4029 U. cuni 4249
iota cio 5554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-rex 2813 df-uni 4250 df-iota 5556 |
Copyright terms: Public domain | W3C validator |