MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotaex Unicode version

Theorem iotaex 5573
Description: Theorem 8.23 in [Quine] p. 58. This theorem proves the existence of the iota class under our definition. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotaex

Proof of Theorem iotaex
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 iotaval 5567 . . . . 5
21eqcomd 2465 . . . 4
32eximi 1656 . . 3
4 df-eu 2286 . . 3
5 isset 3113 . . 3
63, 4, 53imtr4i 266 . 2
7 iotanul 5571 . . 3
8 0ex 4582 . . 3
97, 8syl6eqel 2553 . 2
106, 9pm2.61i 164 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  <->wb 184  A.wal 1393  =wceq 1395  E.wex 1612  e.wcel 1818  E!weu 2282   cvv 3109   c0 3784  iotacio 5554
This theorem is referenced by:  iota4an  5575  fvex  5881  riotaex  6261  erov  7427  iunfictbso  8516  isf32lem9  8762  sumex  13510  prodex  13714  pcval  14368  grpidval  15887  fn0g  15889  gsumvalx  15897  psgnfn  16526  psgnval  16532  dchrptlem1  23539  lgsdchrval  23622  lgsdchr  23623  ellimciota  31620  fourierdlem36  31925  bnj1366  33888  bj-finsumval0  34663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-nul 4581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-v 3111  df-sbc 3328  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-sn 4030  df-pr 4032  df-uni 4250  df-iota 5556
  Copyright terms: Public domain W3C validator