MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotanul Unicode version

Theorem iotanul 5571
Description: Theorem 8.22 in [Quine] p. 57. This theorem is the result if there isn't exactly one that satisfies . (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotanul

Proof of Theorem iotanul
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-eu 2286 . 2
2 dfiota2 5557 . . 3
3 alnex 1614 . . . . . 6
4 ax-1 6 . . . . . . . . . . 11
5 eqidd 2458 . . . . . . . . . . 11
64, 5impbid1 203 . . . . . . . . . 10
76con2bid 329 . . . . . . . . 9
87alimi 1633 . . . . . . . 8
9 abbi 2588 . . . . . . . 8
108, 9sylib 196 . . . . . . 7
11 dfnul2 3786 . . . . . . 7
1210, 11syl6eqr 2516 . . . . . 6
133, 12sylbir 213 . . . . 5
1413unieqd 4259 . . . 4
15 uni0 4276 . . . 4
1614, 15syl6eq 2514 . . 3
172, 16syl5eq 2510 . 2
181, 17sylnbi 306 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  <->wb 184  A.wal 1393  =wceq 1395  E.wex 1612  E!weu 2282  {cab 2442   c0 3784  U.cuni 4249  iotacio 5554
This theorem is referenced by:  iotassuni  5572  iotaex  5573  dfiota4  5584  csbiota  5585  tz6.12-2  5862  dffv3  5867  csbriota  6269  riotaund  6293  isf32lem9  8762  grpidval  15887  0g0  15890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-v 3111  df-dif 3478  df-in 3482  df-ss 3489  df-nul 3785  df-sn 4030  df-uni 4250  df-iota 5556
  Copyright terms: Public domain W3C validator