Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iotanul | Unicode version |
Description: Theorem 8.22 in [Quine] p. 57. This theorem is the result if there isn't exactly one that satisfies . (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
iotanul |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2286 | . 2 | |
2 | dfiota2 5557 | . . 3 | |
3 | alnex 1614 | . . . . . 6 | |
4 | ax-1 6 | . . . . . . . . . . 11 | |
5 | eqidd 2458 | . . . . . . . . . . 11 | |
6 | 4, 5 | impbid1 203 | . . . . . . . . . 10 |
7 | 6 | con2bid 329 | . . . . . . . . 9 |
8 | 7 | alimi 1633 | . . . . . . . 8 |
9 | abbi 2588 | . . . . . . . 8 | |
10 | 8, 9 | sylib 196 | . . . . . . 7 |
11 | dfnul2 3786 | . . . . . . 7 | |
12 | 10, 11 | syl6eqr 2516 | . . . . . 6 |
13 | 3, 12 | sylbir 213 | . . . . 5 |
14 | 13 | unieqd 4259 | . . . 4 |
15 | uni0 4276 | . . . 4 | |
16 | 14, 15 | syl6eq 2514 | . . 3 |
17 | 2, 16 | syl5eq 2510 | . 2 |
18 | 1, 17 | sylnbi 306 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 A. wal 1393 = wceq 1395
E. wex 1612 E! weu 2282 { cab 2442
c0 3784 U. cuni 4249 iota cio 5554 |
This theorem is referenced by: iotassuni 5572 iotaex 5573 dfiota4 5584 csbiota 5585 tz6.12-2 5862 dffv3 5867 csbriota 6269 riotaund 6293 isf32lem9 8762 grpidval 15887 0g0 15890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-v 3111 df-dif 3478 df-in 3482 df-ss 3489 df-nul 3785 df-sn 4030 df-uni 4250 df-iota 5556 |
Copyright terms: Public domain | W3C validator |