MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotassuni Unicode version

Theorem iotassuni 5572
Description: The iota class is a subset of the union of all elements satisfying . (Contributed by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
iotassuni

Proof of Theorem iotassuni
StepHypRef Expression
1 iotauni 5568 . . 3
2 eqimss 3555 . . 3
31, 2syl 16 . 2
4 iotanul 5571 . . 3
5 0ss 3814 . . 3
64, 5syl6eqss 3553 . 2
73, 6pm2.61i 164 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  =wceq 1395  E!weu 2282  {cab 2442  C_wss 3475   c0 3784  U.cuni 4249  iotacio 5554
This theorem is referenced by:  bj-nuliotaALT  34587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-v 3111  df-sbc 3328  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-sn 4030  df-pr 4032  df-uni 4250  df-iota 5556
  Copyright terms: Public domain W3C validator