Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iotaval | Unicode version |
Description: Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
iotaval |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiota2 5557 | . 2 | |
2 | vex 3112 | . . . . . . 7 | |
3 | sbeqalb 3384 | . . . . . . . 8 | |
4 | equcomi 1793 | . . . . . . . 8 | |
5 | 3, 4 | syl6 33 | . . . . . . 7 |
6 | 2, 5 | ax-mp 5 | . . . . . 6 |
7 | 6 | ex 434 | . . . . 5 |
8 | equequ2 1799 | . . . . . . . . . 10 | |
9 | 8 | equcoms 1795 | . . . . . . . . 9 |
10 | 9 | bibi2d 318 | . . . . . . . 8 |
11 | 10 | biimpd 207 | . . . . . . 7 |
12 | 11 | alimdv 1709 | . . . . . 6 |
13 | 12 | com12 31 | . . . . 5 |
14 | 7, 13 | impbid 191 | . . . 4 |
15 | 14 | alrimiv 1719 | . . 3 |
16 | uniabio 5566 | . . 3 | |
17 | 15, 16 | syl 16 | . 2 |
18 | 1, 17 | syl5eq 2510 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 = wceq 1395
e. wcel 1818 { cab 2442 cvv 3109
U. cuni 4249 iota cio 5554 |
This theorem is referenced by: iotauni 5568 iota1 5570 iotaex 5573 iota4 5574 iota5 5576 iota5f 29102 iotain 31324 iotaexeu 31325 iotasbc 31326 iotaequ 31336 iotavalb 31337 pm14.24 31339 sbiota1 31341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-rex 2813 df-v 3111 df-sbc 3328 df-un 3480 df-sn 4030 df-pr 4032 df-uni 4250 df-iota 5556 |
Copyright terms: Public domain | W3C validator |