MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isarep1 Unicode version

Theorem isarep1 5672
Description: Part of a study of the Axiom of Replacement used by the Isabelle prover. The object PrimReplace is apparently the image of the function encoded by (x, ) i.e. the class . If so, we can prove Isabelle's "Axiom of Replacement" conclusion without using the Axiom of Replacement, for which I (N. Megill) currently have no explanation. (Contributed by NM, 26-Oct-2006.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
Assertion
Ref Expression
isarep1
Distinct variable groups:   ,   , ,

Proof of Theorem isarep1
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 vex 3112 . . 3
21elima 5347 . 2
3 df-br 4453 . . . 4
4 opelopabsb 4762 . . . 4
5 sbsbc 3331 . . . . . 6
65sbbii 1746 . . . . 5
7 sbsbc 3331 . . . . 5
86, 7bitr2i 250 . . . 4
93, 4, 83bitri 271 . . 3
109rexbii 2959 . 2
11 nfs1v 2181 . . 3
12 nfv 1707 . . 3
13 sbequ12r 1993 . . 3
1411, 12, 13cbvrex 3081 . 2
152, 10, 143bitri 271 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  [wsb 1739  e.wcel 1818  E.wrex 2808  [.wsbc 3327  <.cop 4035   class class class wbr 4452  {copab 4509  "cima 5007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-br 4453  df-opab 4511  df-xp 5010  df-cnv 5012  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017
  Copyright terms: Public domain W3C validator