Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isarep2 | Unicode version |
Description: Part of a study of the
Axiom of Replacement used by the Isabelle
prover. In Isabelle, the sethood of PrimReplace is apparently
postulated implicitly by its type signature "[ i, [ i, i ]
=> o ] => i", which
automatically asserts that it is a set without
using any axioms. To prove that it is a set in Metamath, we need the
hypotheses of Isabelle's "Axiom of Replacement" as well as the
Axiom of
Replacement in the form funimaex 5671. (Contributed by NM,
26-Oct-2006.) |
Ref | Expression |
---|---|
isarep2.1 | |
isarep2.2 |
Ref | Expression |
---|---|
isarep2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resima 5311 | . . . 4 | |
2 | resopab 5325 | . . . . 5 | |
3 | 2 | imaeq1i 5339 | . . . 4 |
4 | 1, 3 | eqtr3i 2488 | . . 3 |
5 | funopab 5626 | . . . . 5 | |
6 | isarep2.2 | . . . . . . . 8 | |
7 | 6 | rspec 2825 | . . . . . . 7 |
8 | nfv 1707 | . . . . . . . 8 | |
9 | 8 | mo3 2323 | . . . . . . 7 |
10 | 7, 9 | sylibr 212 | . . . . . 6 |
11 | moanimv 2352 | . . . . . 6 | |
12 | 10, 11 | mpbir 209 | . . . . 5 |
13 | 5, 12 | mpgbir 1622 | . . . 4 |
14 | isarep2.1 | . . . . 5 | |
15 | 14 | funimaex 5671 | . . . 4 |
16 | 13, 15 | ax-mp 5 | . . 3 |
17 | 4, 16 | eqeltri 2541 | . 2 |
18 | 17 | isseti 3115 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
A. wal 1393 = wceq 1395 E. wex 1612
[ wsb 1739 e. wcel 1818 E* wmo 2283
A. wral 2807 cvv 3109
{ copab 4509 |` cres 5006
" cima 5007 Fun wfun 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-fun 5595 |
Copyright terms: Public domain | W3C validator |