MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iserd Unicode version

Theorem iserd 7356
Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
iserd.1
iserd.2
iserd.3
iserd.4
Assertion
Ref Expression
iserd
Distinct variable groups:   , , ,   ,   , , ,

Proof of Theorem iserd
StepHypRef Expression
1 iserd.1 . . 3
2 eqidd 2458 . . 3
3 iserd.2 . . . . . . . 8
43ex 434 . . . . . . 7
5 iserd.3 . . . . . . . 8
65ex 434 . . . . . . 7
74, 6jca 532 . . . . . 6
87alrimiv 1719 . . . . 5
98alrimiv 1719 . . . 4
109alrimiv 1719 . . 3
11 dfer2 7331 . . 3
121, 2, 10, 11syl3anbrc 1180 . 2
1312adantr 465 . . . . . . . 8
14 simpr 461 . . . . . . . 8
1513, 14erref 7350 . . . . . . 7
1615ex 434 . . . . . 6
17 vex 3112 . . . . . . 7
1817, 17breldm 5212 . . . . . 6
1916, 18impbid1 203 . . . . 5
20 iserd.4 . . . . 5
2119, 20bitr4d 256 . . . 4
2221eqrdv 2454 . . 3
23 ereq2 7338 . . 3
2422, 23syl 16 . 2
2512, 24mpbid 210 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  A.wal 1393  =wceq 1395  e.wcel 1818   class class class wbr 4452  domcdm 5004  Relwrel 5009  Erwer 7327
This theorem is referenced by:  swoer  7358  eqer  7363  0er  7365  iiner  7402  erinxp  7404  ecopover  7434  ener  7582  eqger  16251  gicer  16324  gaorber  16346  efgrelexlemb  16768  efgcpbllemb  16773  hmpher  20285  xmeter  20936  phtpcer  21495  vitalilem1  22017  ercgrg  23908  erclwwlk  24816  erclwwlkn  24828  metider  27873  cicer  32590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-br 4453  df-opab 4511  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-er 7330
  Copyright terms: Public domain W3C validator