Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iserd | Unicode version |
Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
iserd.1 | |
iserd.2 | |
iserd.3 | |
iserd.4 |
Ref | Expression |
---|---|
iserd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iserd.1 | . . 3 | |
2 | eqidd 2458 | . . 3 | |
3 | iserd.2 | . . . . . . . 8 | |
4 | 3 | ex 434 | . . . . . . 7 |
5 | iserd.3 | . . . . . . . 8 | |
6 | 5 | ex 434 | . . . . . . 7 |
7 | 4, 6 | jca 532 | . . . . . 6 |
8 | 7 | alrimiv 1719 | . . . . 5 |
9 | 8 | alrimiv 1719 | . . . 4 |
10 | 9 | alrimiv 1719 | . . 3 |
11 | dfer2 7331 | . . 3 | |
12 | 1, 2, 10, 11 | syl3anbrc 1180 | . 2 |
13 | 12 | adantr 465 | . . . . . . . 8 |
14 | simpr 461 | . . . . . . . 8 | |
15 | 13, 14 | erref 7350 | . . . . . . 7 |
16 | 15 | ex 434 | . . . . . 6 |
17 | vex 3112 | . . . . . . 7 | |
18 | 17, 17 | breldm 5212 | . . . . . 6 |
19 | 16, 18 | impbid1 203 | . . . . 5 |
20 | iserd.4 | . . . . 5 | |
21 | 19, 20 | bitr4d 256 | . . . 4 |
22 | 21 | eqrdv 2454 | . . 3 |
23 | ereq2 7338 | . . 3 | |
24 | 22, 23 | syl 16 | . 2 |
25 | 12, 24 | mpbid 210 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 = wceq 1395
e. wcel 1818 class class class wbr 4452
dom cdm 5004 Rel wrel 5009 Er wer 7327 |
This theorem is referenced by: swoer 7358 eqer 7363 0er 7365 iiner 7402 erinxp 7404 ecopover 7434 ener 7582 eqger 16251 gicer 16324 gaorber 16346 efgrelexlemb 16768 efgcpbllemb 16773 hmpher 20285 xmeter 20936 phtpcer 21495 vitalilem1 22017 ercgrg 23908 erclwwlk 24816 erclwwlkn 24828 metider 27873 cicer 32590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-er 7330 |
Copyright terms: Public domain | W3C validator |