Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isf32lem1 | Unicode version |
Description: Lemma for isfin3-2 8768. Derive weak ordering property. (Contributed by Stefan O'Rear, 5-Nov-2014.) |
Ref | Expression |
---|---|
isf32lem.a | |
isf32lem.b | |
isf32lem.c |
Ref | Expression |
---|---|
isf32lem1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 5871 | . . . . 5 | |
2 | 1 | sseq1d 3530 | . . . 4 |
3 | 2 | imbi2d 316 | . . 3 |
4 | fveq2 5871 | . . . . 5 | |
5 | 4 | sseq1d 3530 | . . . 4 |
6 | 5 | imbi2d 316 | . . 3 |
7 | fveq2 5871 | . . . . 5 | |
8 | 7 | sseq1d 3530 | . . . 4 |
9 | 8 | imbi2d 316 | . . 3 |
10 | fveq2 5871 | . . . . 5 | |
11 | 10 | sseq1d 3530 | . . . 4 |
12 | 11 | imbi2d 316 | . . 3 |
13 | ssid 3522 | . . . 4 | |
14 | 13 | a1ii 27 | . . 3 |
15 | isf32lem.b | . . . . . . 7 | |
16 | suceq 4948 | . . . . . . . . . 10 | |
17 | 16 | fveq2d 5875 | . . . . . . . . 9 |
18 | fveq2 5871 | . . . . . . . . 9 | |
19 | 17, 18 | sseq12d 3532 | . . . . . . . 8 |
20 | 19 | rspcv 3206 | . . . . . . 7 |
21 | 15, 20 | syl5 32 | . . . . . 6 |
22 | 21 | ad2antrr 725 | . . . . 5 |
23 | sstr2 3510 | . . . . 5 | |
24 | 22, 23 | syl6 33 | . . . 4 |
25 | 24 | a2d 26 | . . 3 |
26 | 3, 6, 9, 12, 14, 25 | findsg 6727 | . 2 |
27 | 26 | impr 619 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 C_ wss 3475 ~P cpw 4012
|^| cint 4286
suc csuc 4885
ran crn 5005 --> wf 5589 ` cfv 5593
com 6700 |
This theorem is referenced by: isf32lem2 8755 isf32lem3 8756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-tr 4546 df-eprel 4796 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-iota 5556 df-fv 5601 df-om 6701 |
Copyright terms: Public domain | W3C validator |