Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfin2-2 | Unicode version |
Description: expressed in terms of minimal elements. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Proof shortened by Mario Carneiro, 16-May-2015.) |
Ref | Expression |
---|---|
isfin2-2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi 4021 | . . . 4 | |
2 | fin2i2 8719 | . . . . 5 | |
3 | 2 | ex 434 | . . . 4 |
4 | 1, 3 | sylan2 474 | . . 3 |
5 | 4 | ralrimiva 2871 | . 2 |
6 | elpwi 4021 | . . . . 5 | |
7 | simp1r 1021 | . . . . . . . 8 | |
8 | ssrab2 3584 | . . . . . . . . . . 11 | |
9 | simp1l 1020 | . . . . . . . . . . . 12 | |
10 | pwexg 4636 | . . . . . . . . . . . 12 | |
11 | elpw2g 4615 | . . . . . . . . . . . 12 | |
12 | 9, 10, 11 | 3syl 20 | . . . . . . . . . . 11 |
13 | 8, 12 | mpbiri 233 | . . . . . . . . . 10 |
14 | simp2 997 | . . . . . . . . . 10 | |
15 | simp3l 1024 | . . . . . . . . . . . 12 | |
16 | fin23lem7 8717 | . . . . . . . . . . . 12 | |
17 | 9, 7, 15, 16 | syl3anc 1228 | . . . . . . . . . . 11 |
18 | sorpsscmpl 6591 | . . . . . . . . . . . . 13 | |
19 | 18 | adantl 466 | . . . . . . . . . . . 12 |
20 | 19 | 3ad2ant3 1019 | . . . . . . . . . . 11 |
21 | 17, 20 | jca 532 | . . . . . . . . . 10 |
22 | neeq1 2738 | . . . . . . . . . . . . 13 | |
23 | soeq2 4825 | . . . . . . . . . . . . 13 | |
24 | 22, 23 | anbi12d 710 | . . . . . . . . . . . 12 |
25 | inteq 4289 | . . . . . . . . . . . . 13 | |
26 | id 22 | . . . . . . . . . . . . 13 | |
27 | 25, 26 | eleq12d 2539 | . . . . . . . . . . . 12 |
28 | 24, 27 | imbi12d 320 | . . . . . . . . . . 11 |
29 | 28 | rspcv 3206 | . . . . . . . . . 10 |
30 | 13, 14, 21, 29 | syl3c 61 | . . . . . . . . 9 |
31 | sorpssint 6590 | . . . . . . . . . 10 | |
32 | 20, 31 | syl 16 | . . . . . . . . 9 |
33 | 30, 32 | mpbird 232 | . . . . . . . 8 |
34 | psseq1 3590 | . . . . . . . . 9 | |
35 | psseq1 3590 | . . . . . . . . 9 | |
36 | pssdifcom1 3913 | . . . . . . . . 9 | |
37 | 34, 35, 36 | fin23lem11 8718 | . . . . . . . 8 |
38 | 7, 33, 37 | sylc 60 | . . . . . . 7 |
39 | simp3r 1025 | . . . . . . . 8 | |
40 | sorpssuni 6589 | . . . . . . . 8 | |
41 | 39, 40 | syl 16 | . . . . . . 7 |
42 | 38, 41 | mpbid 210 | . . . . . 6 |
43 | 42 | 3exp 1195 | . . . . 5 |
44 | 6, 43 | sylan2 474 | . . . 4 |
45 | 44 | ralrimdva 2875 | . . 3 |
46 | isfin2 8695 | . . 3 | |
47 | 45, 46 | sylibrd 234 | . 2 |
48 | 5, 47 | impbid2 204 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 /\ w3a 973
= wceq 1395 e. wcel 1818 =/= wne 2652
A. wral 2807 E. wrex 2808 { crab 2811
cvv 3109
\ cdif 3472 C_ wss 3475 C. wpss 3476
c0 3784 ~P cpw 4012 U. cuni 4249
|^| cint 4286
Or wor 4804 crpss 6579 cfin2 8680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-int 4287 df-br 4453 df-opab 4511 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-rpss 6580 df-fin2 8687 |
Copyright terms: Public domain | W3C validator |