MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin2 Unicode version

Theorem isfin2 8695
Description: Definition of a II-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
isfin2
Distinct variable group:   ,

Proof of Theorem isfin2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 pweq 4015 . . . 4
21pweqd 4017 . . 3
32raleqdv 3060 . 2
4 df-fin2 8687 . 2
53, 4elab2g 3248 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  =wceq 1395  e.wcel 1818  =/=wne 2652  A.wral 2807   c0 3784  ~Pcpw 4012  U.cuni 4249  Orwor 4804   crpss 6579   cfin2 8680
This theorem is referenced by:  fin2i  8696  isfin2-2  8720  ssfin2  8721  enfin2i  8722  fin12  8814  fin1a2s  8815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-v 3111  df-in 3482  df-ss 3489  df-pw 4014  df-fin2 8687
  Copyright terms: Public domain W3C validator