MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin3 Unicode version

Theorem isfin3 8697
Description: Definition of a III-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
isfin3

Proof of Theorem isfin3
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-fin3 8689 . . 3
21eleq2i 2535 . 2
3 elex 3118 . . . 4
4 pwexb 6611 . . . 4
53, 4sylibr 212 . . 3
6 pweq 4015 . . . 4
76eleq1d 2526 . . 3
85, 7elab3 3253 . 2
92, 8bitri 249 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  =wceq 1395  e.wcel 1818  {cab 2442   cvv 3109  ~Pcpw 4012   cfin4 8681   cfin3 8682
This theorem is referenced by:  fin23lem41  8753  isfin32i  8766  fin34  8791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6592
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-rex 2813  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-pw 4014  df-sn 4030  df-pr 4032  df-uni 4250  df-fin3 8689
  Copyright terms: Public domain W3C validator