Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfin4-3 | Unicode version |
Description: Alternate definition of IV-finite sets: they are strictly dominated by their successors. (Thus, the proper subset referred to in isfin4 8698 can be assumed to be only a singleton smaller than the original.) (Contributed by Mario Carneiro, 18-May-2015.) |
Ref | Expression |
---|---|
isfin4-3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 7156 | . . . 4 | |
2 | cdadom3 8589 | . . . 4 | |
3 | 1, 2 | mpan2 671 | . . 3 |
4 | ssun1 3666 | . . . . . . . 8 | |
5 | relen 7541 | . . . . . . . . . 10 | |
6 | 5 | brrelexi 5045 | . . . . . . . . 9 |
7 | cdaval 8571 | . . . . . . . . 9 | |
8 | 6, 1, 7 | sylancl 662 | . . . . . . . 8 |
9 | 4, 8 | syl5sseqr 3552 | . . . . . . 7 |
10 | 0lt1o 7173 | . . . . . . . . . 10 | |
11 | 1 | elexi 3119 | . . . . . . . . . . 11 |
12 | 11 | snid 4057 | . . . . . . . . . 10 |
13 | opelxpi 5036 | . . . . . . . . . 10 | |
14 | 10, 12, 13 | mp2an 672 | . . . . . . . . 9 |
15 | elun2 3671 | . . . . . . . . 9 | |
16 | 14, 15 | mp1i 12 | . . . . . . . 8 |
17 | 16, 8 | eleqtrrd 2548 | . . . . . . 7 |
18 | 1n0 7164 | . . . . . . . 8 | |
19 | opelxp2 5038 | . . . . . . . . . 10 | |
20 | elsni 4054 | . . . . . . . . . 10 | |
21 | 19, 20 | syl 16 | . . . . . . . . 9 |
22 | 21 | necon3ai 2685 | . . . . . . . 8 |
23 | 18, 22 | mp1i 12 | . . . . . . 7 |
24 | 9, 17, 23 | ssnelpssd 3891 | . . . . . 6 |
25 | 0ex 4582 | . . . . . . . 8 | |
26 | xpsneng 7622 | . . . . . . . 8 | |
27 | 6, 25, 26 | sylancl 662 | . . . . . . 7 |
28 | entr 7587 | . . . . . . 7 | |
29 | 27, 28 | mpancom 669 | . . . . . 6 |
30 | fin4i 8699 | . . . . . 6 | |
31 | 24, 29, 30 | syl2anc 661 | . . . . 5 |
32 | fin4en1 8710 | . . . . 5 | |
33 | 31, 32 | mtod 177 | . . . 4 |
34 | 33 | con2i 120 | . . 3 |
35 | brsdom 7558 | . . 3 | |
36 | 3, 34, 35 | sylanbrc 664 | . 2 |
37 | sdomnen 7564 | . . . 4 | |
38 | infcda1 8594 | . . . . 5 | |
39 | 38 | ensymd 7586 | . . . 4 |
40 | 37, 39 | nsyl 121 | . . 3 |
41 | relsdom 7543 | . . . . 5 | |
42 | 41 | brrelexi 5045 | . . . 4 |
43 | isfin4-2 8715 | . . . 4 | |
44 | 42, 43 | syl 16 | . . 3 |
45 | 40, 44 | mpbird 232 | . 2 |
46 | 36, 45 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 <-> wb 184
= wceq 1395 e. wcel 1818 =/= wne 2652
cvv 3109
u. cun 3473 C. wpss 3476 c0 3784 { csn 4029 <. cop 4035
class class class wbr 4452 con0 4883 X. cxp 5002 (class class class)co 6296
com 6700
c1o 7142
cen 7533 cdom 7534 csdm 7535 ccda 8568
cfin4 8681 |
This theorem is referenced by: fin45 8793 finngch 9054 gchinf 9056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-recs 7061 df-rdg 7095 df-1o 7149 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-cda 8569 df-fin4 8688 |
Copyright terms: Public domain | W3C validator |