MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin5 Unicode version

Theorem isfin5 8700
Description: Definition of a V-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
isfin5

Proof of Theorem isfin5
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-fin5 8690 . . 3
21eleq2i 2535 . 2
3 id 22 . . . . 5
4 0ex 4582 . . . . 5
53, 4syl6eqel 2553 . . . 4
6 relsdom 7543 . . . . 5
76brrelexi 5045 . . . 4
85, 7jaoi 379 . . 3
9 eqeq1 2461 . . . 4
10 id 22 . . . . 5
1110, 10oveq12d 6314 . . . . 5
1210, 11breq12d 4465 . . . 4
139, 12orbi12d 709 . . 3
148, 13elab3 3253 . 2
152, 14bitri 249 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  \/wo 368  =wceq 1395  e.wcel 1818  {cab 2442   cvv 3109   c0 3784   class class class wbr 4452  (class class class)co 6296   csdm 7535   ccda 8568   cfin5 8683
This theorem is referenced by:  isfin5-2  8792  fin56  8794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-opab 4511  df-xp 5010  df-rel 5011  df-iota 5556  df-fv 5601  df-ov 6299  df-dom 7538  df-sdom 7539  df-fin5 8690
  Copyright terms: Public domain W3C validator