Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfin7-2 | Unicode version |
Description: A set is VII-finite iff it is non-well-orderable or finite. (Contributed by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
isfin7-2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfin7 8702 | . . . 4 | |
2 | 1 | ibi 241 | . . 3 |
3 | isnum2 8347 | . . . . 5 | |
4 | ensym 7584 | . . . . . . . . 9 | |
5 | simprl 756 | . . . . . . . . . . 11 | |
6 | enfi 7756 | . . . . . . . . . . . . . . 15 | |
7 | onfin 7728 | . . . . . . . . . . . . . . 15 | |
8 | 6, 7 | sylan9bbr 700 | . . . . . . . . . . . . . 14 |
9 | 8 | biimprd 223 | . . . . . . . . . . . . 13 |
10 | 9 | con3d 133 | . . . . . . . . . . . 12 |
11 | 10 | impcom 430 | . . . . . . . . . . 11 |
12 | 5, 11 | eldifd 3486 | . . . . . . . . . 10 |
13 | simprr 757 | . . . . . . . . . 10 | |
14 | 12, 13 | jca 532 | . . . . . . . . 9 |
15 | 4, 14 | sylanr2 653 | . . . . . . . 8 |
16 | 15 | ex 434 | . . . . . . 7 |
17 | 16 | reximdv2 2928 | . . . . . 6 |
18 | 17 | com12 31 | . . . . 5 |
19 | 3, 18 | sylbi 195 | . . . 4 |
20 | 19 | con1d 124 | . . 3 |
21 | 2, 20 | syl5com 30 | . 2 |
22 | eldifi 3625 | . . . . . . 7 | |
23 | ensym 7584 | . . . . . . 7 | |
24 | isnumi 8348 | . . . . . . 7 | |
25 | 22, 23, 24 | syl2an 477 | . . . . . 6 |
26 | 25 | rexlimiva 2945 | . . . . 5 |
27 | 26 | con3i 135 | . . . 4 |
28 | isfin7 8702 | . . . 4 | |
29 | 27, 28 | syl5ibr 221 | . . 3 |
30 | fin17 8795 | . . . 4 | |
31 | 30 | a1i 11 | . . 3 |
32 | 29, 31 | jad 162 | . 2 |
33 | 21, 32 | impbid2 204 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 e. wcel 1818
E. wrex 2808 \ cdif 3472 class class class wbr 4452
con0 4883 dom cdm 5004 com 6700
cen 7533 cfn 7536 ccrd 8337 cfin7 8685 |
This theorem is referenced by: fin71num 8798 dffin7-2 8799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-card 8341 df-fin7 8692 |
Copyright terms: Public domain | W3C validator |