Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfinite2 | Unicode version |
Description: Any set strictly dominated by the class of natural numbers is finite. Sufficiency part of Theorem 42 of [Suppes] p. 151. This theorem does not require the Axiom of Infinity. (Contributed by NM, 24-Apr-2004.) |
Ref | Expression |
---|---|
isfinite2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsdom 7543 | . . 3 | |
2 | 1 | brrelex2i 5046 | . 2 |
3 | sdomdom 7563 | . . . 4 | |
4 | domeng 7550 | . . . 4 | |
5 | 3, 4 | syl5ib 219 | . . 3 |
6 | ensym 7584 | . . . . . . . . . . 11 | |
7 | 6 | ad2antrl 727 | . . . . . . . . . 10 |
8 | simpl 457 | . . . . . . . . . 10 | |
9 | ensdomtr 7673 | . . . . . . . . . 10 | |
10 | 7, 8, 9 | syl2anc 661 | . . . . . . . . 9 |
11 | sdomnen 7564 | . . . . . . . . 9 | |
12 | 10, 11 | syl 16 | . . . . . . . 8 |
13 | simpr 461 | . . . . . . . . 9 | |
14 | unbnn 7796 | . . . . . . . . . 10 | |
15 | 14 | 3expia 1198 | . . . . . . . . 9 |
16 | 2, 13, 15 | syl2an 477 | . . . . . . . 8 |
17 | 12, 16 | mtod 177 | . . . . . . 7 |
18 | rexnal 2905 | . . . . . . . . 9 | |
19 | omsson 6704 | . . . . . . . . . . . . 13 | |
20 | sstr 3511 | . . . . . . . . . . . . 13 | |
21 | 19, 20 | mpan2 671 | . . . . . . . . . . . 12 |
22 | nnord 6708 | . . . . . . . . . . . 12 | |
23 | ssel2 3498 | . . . . . . . . . . . . . . . . . 18 | |
24 | vex 3112 | . . . . . . . . . . . . . . . . . . 19 | |
25 | 24 | elon 4892 | . . . . . . . . . . . . . . . . . 18 |
26 | 23, 25 | sylib 196 | . . . . . . . . . . . . . . . . 17 |
27 | ordtri1 4916 | . . . . . . . . . . . . . . . . 17 | |
28 | 26, 27 | sylan 471 | . . . . . . . . . . . . . . . 16 |
29 | 28 | an32s 804 | . . . . . . . . . . . . . . 15 |
30 | 29 | ralbidva 2893 | . . . . . . . . . . . . . 14 |
31 | unissb 4281 | . . . . . . . . . . . . . 14 | |
32 | ralnex 2903 | . . . . . . . . . . . . . . 15 | |
33 | 32 | bicomi 202 | . . . . . . . . . . . . . 14 |
34 | 30, 31, 33 | 3bitr4g 288 | . . . . . . . . . . . . 13 |
35 | ordunisssuc 4985 | . . . . . . . . . . . . 13 | |
36 | 34, 35 | bitr3d 255 | . . . . . . . . . . . 12 |
37 | 21, 22, 36 | syl2an 477 | . . . . . . . . . . 11 |
38 | peano2b 6716 | . . . . . . . . . . . . . 14 | |
39 | ssnnfi 7759 | . . . . . . . . . . . . . 14 | |
40 | 38, 39 | sylanb 472 | . . . . . . . . . . . . 13 |
41 | 40 | ex 434 | . . . . . . . . . . . 12 |
42 | 41 | adantl 466 | . . . . . . . . . . 11 |
43 | 37, 42 | sylbid 215 | . . . . . . . . . 10 |
44 | 43 | rexlimdva 2949 | . . . . . . . . 9 |
45 | 18, 44 | syl5bir 218 | . . . . . . . 8 |
46 | 45 | ad2antll 728 | . . . . . . 7 |
47 | 17, 46 | mpd 15 | . . . . . 6 |
48 | simprl 756 | . . . . . 6 | |
49 | enfii 7757 | . . . . . 6 | |
50 | 47, 48, 49 | syl2anc 661 | . . . . 5 |
51 | 50 | ex 434 | . . . 4 |
52 | 51 | exlimdv 1724 | . . 3 |
53 | 5, 52 | sylcom 29 | . 2 |
54 | 2, 53 | mpcom 36 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 E. wex 1612
e. wcel 1818 A. wral 2807 E. wrex 2808
cvv 3109
C_ wss 3475 U. cuni 4249 class class class wbr 4452
Ord word 4882
con0 4883 suc csuc 4885 com 6700
cen 7533 cdom 7534 csdm 7535 cfn 7536 |
This theorem is referenced by: isfiniteg 7800 unfi2 7809 unifi2 7830 axcclem 8858 dirith2 23713 volmeas 28203 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 |
Copyright terms: Public domain | W3C validator |