Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isocnv3 | Unicode version |
Description: Complementation law for isomorphism. (Contributed by Mario Carneiro, 9-Sep-2015.) |
Ref | Expression |
---|---|
isocnv3.1 | |
isocnv3.2 |
Ref | Expression |
---|---|
isocnv3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brxp 5035 | . . . . . . . 8 | |
2 | isocnv3.1 | . . . . . . . . . . 11 | |
3 | 2 | breqi 4458 | . . . . . . . . . 10 |
4 | brdif 4502 | . . . . . . . . . 10 | |
5 | 3, 4 | bitri 249 | . . . . . . . . 9 |
6 | 5 | baib 903 | . . . . . . . 8 |
7 | 1, 6 | sylbir 213 | . . . . . . 7 |
8 | 7 | adantl 466 | . . . . . 6 |
9 | f1of 5821 | . . . . . . . 8 | |
10 | ffvelrn 6029 | . . . . . . . . . 10 | |
11 | ffvelrn 6029 | . . . . . . . . . 10 | |
12 | 10, 11 | anim12dan 837 | . . . . . . . . 9 |
13 | brxp 5035 | . . . . . . . . 9 | |
14 | 12, 13 | sylibr 212 | . . . . . . . 8 |
15 | 9, 14 | sylan 471 | . . . . . . 7 |
16 | isocnv3.2 | . . . . . . . . . 10 | |
17 | 16 | breqi 4458 | . . . . . . . . 9 |
18 | brdif 4502 | . . . . . . . . 9 | |
19 | 17, 18 | bitri 249 | . . . . . . . 8 |
20 | 19 | baib 903 | . . . . . . 7 |
21 | 15, 20 | syl 16 | . . . . . 6 |
22 | 8, 21 | bibi12d 321 | . . . . 5 |
23 | notbi 295 | . . . . 5 | |
24 | 22, 23 | syl6rbbr 264 | . . . 4 |
25 | 24 | 2ralbidva 2899 | . . 3 |
26 | 25 | pm5.32i 637 | . 2 |
27 | df-isom 5602 | . 2 | |
28 | df-isom 5602 | . 2 | |
29 | 26, 27, 28 | 3bitr4i 277 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 \ cdif 3472 class class class wbr 4452
X. cxp 5002 --> wf 5589 -1-1-onto-> wf1o 5592 ` cfv 5593 Isom wiso 5594 |
This theorem is referenced by: leiso 12508 gtiso 27519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-f1o 5600 df-fv 5601 df-isom 5602 |
Copyright terms: Public domain | W3C validator |