Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isoeq3 | Unicode version |
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.) |
Ref | Expression |
---|---|
isoeq3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq 4454 | . . . . 5 | |
2 | 1 | bibi2d 318 | . . . 4 |
3 | 2 | 2ralbidv 2901 | . . 3 |
4 | 3 | anbi2d 703 | . 2 |
5 | df-isom 5602 | . 2 | |
6 | df-isom 5602 | . 2 | |
7 | 4, 5, 6 | 3bitr4g 288 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 A. wral 2807
class class class wbr 4452 -1-1-onto-> wf1o 5592 ` cfv 5593 Isom wiso 5594 |
This theorem is referenced by: fnwelem 6915 hartogslem1 7988 leiso 12508 gtiso 27519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-cleq 2449 df-clel 2452 df-ral 2812 df-br 4453 df-isom 5602 |
Copyright terms: Public domain | W3C validator |