Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isoini2 | Unicode version |
Description: Isomorphisms are isomorphisms on their initial segments. (Contributed by Mario Carneiro, 29-Mar-2014.) |
Ref | Expression |
---|---|
isoini2.1 | |
isoini2.2 |
Ref | Expression |
---|---|
isoini2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isof1o 6221 | . . . . . 6 | |
2 | f1of1 5820 | . . . . . 6 | |
3 | 1, 2 | syl 16 | . . . . 5 |
4 | 3 | adantr 465 | . . . 4 |
5 | isoini2.1 | . . . . 5 | |
6 | inss1 3717 | . . . . 5 | |
7 | 5, 6 | eqsstri 3533 | . . . 4 |
8 | f1ores 5835 | . . . 4 | |
9 | 4, 7, 8 | sylancl 662 | . . 3 |
10 | isoini 6234 | . . . . 5 | |
11 | 5 | imaeq2i 5340 | . . . . 5 |
12 | isoini2.2 | . . . . 5 | |
13 | 10, 11, 12 | 3eqtr4g 2523 | . . . 4 |
14 | f1oeq3 5814 | . . . 4 | |
15 | 13, 14 | syl 16 | . . 3 |
16 | 9, 15 | mpbid 210 | . 2 |
17 | df-isom 5602 | . . . . . . 7 | |
18 | 17 | simprbi 464 | . . . . . 6 |
19 | 18 | adantr 465 | . . . . 5 |
20 | ssralv 3563 | . . . . . 6 | |
21 | 20 | ralimdv 2867 | . . . . 5 |
22 | 7, 19, 21 | mpsyl 63 | . . . 4 |
23 | ssralv 3563 | . . . 4 | |
24 | 7, 22, 23 | mpsyl 63 | . . 3 |
25 | fvres 5885 | . . . . . . 7 | |
26 | fvres 5885 | . . . . . . 7 | |
27 | 25, 26 | breqan12d 4467 | . . . . . 6 |
28 | 27 | bibi2d 318 | . . . . 5 |
29 | 28 | ralbidva 2893 | . . . 4 |
30 | 29 | ralbiia 2887 | . . 3 |
31 | 24, 30 | sylibr 212 | . 2 |
32 | df-isom 5602 | . 2 | |
33 | 16, 31, 32 | sylanbrc 664 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 i^i cin 3474 C_ wss 3475
{ csn 4029 class class class wbr 4452
`' ccnv 5003 |` cres 5006 " cima 5007
-1-1-> wf1 5590
-1-1-onto-> wf1o 5592
` cfv 5593 Isom wiso 5594 |
This theorem is referenced by: fz1isolem 12510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 |
Copyright terms: Public domain | W3C validator |