MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isores1 Unicode version

Theorem isores1 6230
Description: An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.)
Assertion
Ref Expression
isores1

Proof of Theorem isores1
StepHypRef Expression
1 isocnv 6226 . . . . 5
2 isores2 6229 . . . . 5
31, 2sylib 196 . . . 4
4 isocnv 6226 . . . 4
53, 4syl 16 . . 3
6 isof1o 6221 . . . 4
7 f1orel 5824 . . . 4
8 dfrel2 5462 . . . . 5
9 isoeq1 6215 . . . . 5
108, 9sylbi 195 . . . 4
116, 7, 103syl 20 . . 3
125, 11mpbid 210 . 2
13 isocnv 6226 . . . . 5
1413, 2sylibr 212 . . . 4
15 isocnv 6226 . . . 4
1614, 15syl 16 . . 3
17 isof1o 6221 . . . 4
18 isoeq1 6215 . . . . 5
198, 18sylbi 195 . . . 4
2017, 7, 193syl 20 . . 3
2116, 20mpbid 210 . 2
2212, 21impbii 188 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  =wceq 1395  i^icin 3474  X.cxp 5002  `'ccnv 5003  Relwrel 5009  -1-1-onto->wf1o 5592  Isomwiso 5594
This theorem is referenced by:  leiso  12508  icopnfhmeo  21443  iccpnfhmeo  21445  xrhmeo  21446  gtiso  27519  xrge0iifhmeo  27918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-opab 4511  df-id 4800  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-isom 5602
  Copyright terms: Public domain W3C validator