Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isores3 | Unicode version |
Description: Induced isomorphism on a subset. (Contributed by Stefan O'Rear, 5-Nov-2014.) |
Ref | Expression |
---|---|
isores3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1of1 5820 | . . . . . . 7 | |
2 | f1ores 5835 | . . . . . . . 8 | |
3 | 2 | expcom 435 | . . . . . . 7 |
4 | 1, 3 | syl5 32 | . . . . . 6 |
5 | ssralv 3563 | . . . . . . 7 | |
6 | ssralv 3563 | . . . . . . . . . 10 | |
7 | 6 | adantr 465 | . . . . . . . . 9 |
8 | fvres 5885 | . . . . . . . . . . . . . 14 | |
9 | fvres 5885 | . . . . . . . . . . . . . 14 | |
10 | 8, 9 | breqan12d 4467 | . . . . . . . . . . . . 13 |
11 | 10 | adantll 713 | . . . . . . . . . . . 12 |
12 | 11 | bibi2d 318 | . . . . . . . . . . 11 |
13 | 12 | biimprd 223 | . . . . . . . . . 10 |
14 | 13 | ralimdva 2865 | . . . . . . . . 9 |
15 | 7, 14 | syld 44 | . . . . . . . 8 |
16 | 15 | ralimdva 2865 | . . . . . . 7 |
17 | 5, 16 | syld 44 | . . . . . 6 |
18 | 4, 17 | anim12d 563 | . . . . 5 |
19 | df-isom 5602 | . . . . 5 | |
20 | df-isom 5602 | . . . . 5 | |
21 | 18, 19, 20 | 3imtr4g 270 | . . . 4 |
22 | 21 | impcom 430 | . . 3 |
23 | isoeq5 6219 | . . 3 | |
24 | 22, 23 | syl5ibrcom 222 | . 2 |
25 | 24 | 3impia 1193 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 A. wral 2807 C_ wss 3475
class class class wbr 4452 |` cres 5006
" cima 5007 -1-1-> wf1 5590 -1-1-onto-> wf1o 5592 ` cfv 5593 Isom wiso 5594 |
This theorem is referenced by: cantnfp1lem3 8120 cantnfp1lem3OLD 8146 fpwwe2lem9 9037 efcvx 22844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 |
Copyright terms: Public domain | W3C validator |