Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isoselem | Unicode version |
Description: Lemma for isose 6239. (Contributed by Mario Carneiro, 23-Jun-2015.) |
Ref | Expression |
---|---|
isofrlem.1 | |
isofrlem.2 |
Ref | Expression |
---|---|
isoselem |
S
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfse2 5375 | . . . . . . . . 9 | |
2 | 1 | biimpi 194 | . . . . . . . 8 |
3 | 2 | r19.21bi 2826 | . . . . . . 7 |
4 | 3 | expcom 435 | . . . . . 6 |
5 | 4 | adantl 466 | . . . . 5 |
6 | imaeq2 5338 | . . . . . . . . . . 11 | |
7 | 6 | eleq1d 2526 | . . . . . . . . . 10 |
8 | 7 | imbi2d 316 | . . . . . . . . 9 |
9 | isofrlem.2 | . . . . . . . . 9 | |
10 | 8, 9 | vtoclg 3167 | . . . . . . . 8 |
11 | 10 | com12 31 | . . . . . . 7 |
12 | 11 | adantr 465 | . . . . . 6 |
13 | isofrlem.1 | . . . . . . . 8 | |
14 | isoini 6234 | . . . . . . . 8 | |
15 | 13, 14 | sylan 471 | . . . . . . 7 |
16 | 15 | eleq1d 2526 | . . . . . 6 |
17 | 12, 16 | sylibd 214 | . . . . 5 |
18 | 5, 17 | syld 44 | . . . 4 |
19 | 18 | ralrimdva 2875 | . . 3 |
20 | isof1o 6221 | . . . . 5 | |
21 | f1ofn 5822 | . . . . 5 | |
22 | sneq 4039 | . . . . . . . . 9 | |
23 | 22 | imaeq2d 5342 | . . . . . . . 8 |
24 | 23 | ineq2d 3699 | . . . . . . 7 |
25 | 24 | eleq1d 2526 | . . . . . 6 |
26 | 25 | ralrn 6034 | . . . . 5 |
27 | 13, 20, 21, 26 | 4syl 21 | . . . 4 |
28 | f1ofo 5828 | . . . . . 6 | |
29 | forn 5803 | . . . . . 6 | |
30 | 13, 20, 28, 29 | 4syl 21 | . . . . 5 |
31 | 30 | raleqdv 3060 | . . . 4 |
32 | 27, 31 | bitr3d 255 | . . 3 |
33 | 19, 32 | sylibd 214 | . 2 |
34 | dfse2 5375 | . 2 | |
35 | 33, 34 | syl6ibr 227 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 cvv 3109
i^i cin 3474 { csn 4029 Se wse 4841
`' ccnv 5003 ran crn 5005 " cima 5007
Fn wfn 5588 -onto-> wfo 5591 -1-1-onto-> wf1o 5592 ` cfv 5593 Isom wiso 5594 |
This theorem is referenced by: isose 6239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-se 4844 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 |
Copyright terms: Public domain | W3C validator |