Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isosolem | Unicode version |
Description: Lemma for isoso 6244. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
Ref | Expression |
---|---|
isosolem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isopolem 6241 | . . 3 | |
2 | isof1o 6221 | . . . . . . . 8 | |
3 | f1of 5821 | . . . . . . . 8 | |
4 | ffvelrn 6029 | . . . . . . . . . 10 | |
5 | 4 | ex 434 | . . . . . . . . 9 |
6 | ffvelrn 6029 | . . . . . . . . . 10 | |
7 | 6 | ex 434 | . . . . . . . . 9 |
8 | 5, 7 | anim12d 563 | . . . . . . . 8 |
9 | 2, 3, 8 | 3syl 20 | . . . . . . 7 |
10 | 9 | imp 429 | . . . . . 6 |
11 | breq1 4455 | . . . . . . . 8 | |
12 | eqeq1 2461 | . . . . . . . 8 | |
13 | breq2 4456 | . . . . . . . 8 | |
14 | 11, 12, 13 | 3orbi123d 1298 | . . . . . . 7 |
15 | breq2 4456 | . . . . . . . 8 | |
16 | eqeq2 2472 | . . . . . . . 8 | |
17 | breq1 4455 | . . . . . . . 8 | |
18 | 15, 16, 17 | 3orbi123d 1298 | . . . . . . 7 |
19 | 14, 18 | rspc2v 3219 | . . . . . 6 |
20 | 10, 19 | syl 16 | . . . . 5 |
21 | isorel 6222 | . . . . . 6 | |
22 | f1of1 5820 | . . . . . . . . 9 | |
23 | 2, 22 | syl 16 | . . . . . . . 8 |
24 | f1fveq 6170 | . . . . . . . 8 | |
25 | 23, 24 | sylan 471 | . . . . . . 7 |
26 | 25 | bicomd 201 | . . . . . 6 |
27 | isorel 6222 | . . . . . . 7 | |
28 | 27 | ancom2s 802 | . . . . . 6 |
29 | 21, 26, 28 | 3orbi123d 1298 | . . . . 5 |
30 | 20, 29 | sylibrd 234 | . . . 4 |
31 | 30 | ralrimdvva 2881 | . . 3 |
32 | 1, 31 | anim12d 563 | . 2 |
33 | df-so 4806 | . 2 | |
34 | df-so 4806 | . 2 | |
35 | 32, 33, 34 | 3imtr4g 270 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 \/ w3o 972 = wceq 1395
e. wcel 1818 A. wral 2807 class class class wbr 4452
Po wpo 4803 Or wor 4804 --> wf 5589
-1-1-> wf1 5590
-1-1-onto-> wf1o 5592
` cfv 5593 Isom wiso 5594 |
This theorem is referenced by: isoso 6244 isowe2 6246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-f1o 5600 df-fv 5601 df-isom 5602 |
Copyright terms: Public domain | W3C validator |