Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > issetf | Unicode version |
Description: A version of isset 3113 that does not require and to be distinct. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
issetf.1 |
Ref | Expression |
---|---|
issetf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isset 3113 | . 2 | |
2 | issetf.1 | . . . 4 | |
3 | 2 | nfeq2 2636 | . . 3 |
4 | nfv 1707 | . . 3 | |
5 | eqeq1 2461 | . . 3 | |
6 | 3, 4, 5 | cbvex 2022 | . 2 |
7 | 1, 6 | bitri 249 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 = wceq 1395
E. wex 1612 e. wcel 1818 F/_ wnfc 2605
cvv 3109 |
This theorem is referenced by: vtoclgf 3165 spcimgft 3185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 |
Copyright terms: Public domain | W3C validator |