MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issetf Unicode version

Theorem issetf 3114
Description: A version of isset 3113 that does not require and to be distinct. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 10-Oct-2016.)
Hypothesis
Ref Expression
issetf.1
Assertion
Ref Expression
issetf

Proof of Theorem issetf
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 isset 3113 . 2
2 issetf.1 . . . 4
32nfeq2 2636 . . 3
4 nfv 1707 . . 3
5 eqeq1 2461 . . 3
63, 4, 5cbvex 2022 . 2
71, 6bitri 249 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  =wceq 1395  E.wex 1612  e.wcel 1818  F/_wnfc 2605   cvv 3109
This theorem is referenced by:  vtoclgf  3165  spcimgft  3185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111
  Copyright terms: Public domain W3C validator