Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > issetri | Unicode version |
Description: A way to say " is a set" (inference rule). (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
issetri.1 |
Ref | Expression |
---|---|
issetri |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issetri.1 | . 2 | |
2 | isset 3113 | . 2 | |
3 | 1, 2 | mpbir 209 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 E. wex 1612
e. wcel 1818 cvv 3109 |
This theorem is referenced by: zfrep4 4571 0ex 4582 inex1 4593 pwex 4635 zfpair2 4692 uniex 6596 bj-snsetex 34521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-12 1854 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-v 3111 |
Copyright terms: Public domain | W3C validator |