Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > issod | Unicode version |
Description: An irreflexive, transitive, linear relation is a strict ordering. (Contributed by NM, 21-Jan-1996.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
issod.1 | |
issod.2 |
Ref | Expression |
---|---|
issod |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issod.1 | . 2 | |
2 | issod.2 | . . 3 | |
3 | 2 | ralrimivva 2878 | . 2 |
4 | df-so 4806 | . 2 | |
5 | 1, 3, 4 | sylanbrc 664 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
\/ w3o 972 e. wcel 1818 A. wral 2807
class class class wbr 4452 Po wpo 4803
Or wor 4804 |
This theorem is referenced by: issoi 4836 swoso 7361 wemapsolem 7996 legso 23985 socnv 29194 fin2so 30040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ral 2812 df-so 4806 |
Copyright terms: Public domain | W3C validator |