Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > issoi | Unicode version |
Description: An irreflexive, transitive, linear relation is a strict ordering. (Contributed by NM, 21-Jan-1996.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
issoi.1 | |
issoi.2 | |
issoi.3 |
Ref | Expression |
---|---|
issoi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issoi.1 | . . . . 5 | |
2 | 1 | adantl 466 | . . . 4 |
3 | issoi.2 | . . . . 5 | |
4 | 3 | adantl 466 | . . . 4 |
5 | 2, 4 | ispod 4813 | . . 3 |
6 | issoi.3 | . . . 4 | |
7 | 6 | adantl 466 | . . 3 |
8 | 5, 7 | issod 4835 | . 2 |
9 | 8 | trud 1404 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 \/ w3o 972 /\ w3a 973
wtru 1396 e. wcel 1818 class class class wbr 4452
Or wor 4804 |
This theorem is referenced by: isso2i 4837 ltsopr 9431 sltsolem1 29428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 |
This theorem depends on definitions: df-bi 185 df-an 371 df-3an 975 df-tru 1398 df-ral 2812 df-po 4805 df-so 4806 |
Copyright terms: Public domain | W3C validator |