Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isumltss | Unicode version |
Description: A partial sum of a series with positive terms is less than the infinite sum. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Mar-2015.) |
Ref | Expression |
---|---|
isumltss.1 | |
isumltss.2 | |
isumltss.3 | |
isumltss.4 | |
isumltss.5 | |
isumltss.6 | |
isumltss.7 |
Ref | Expression |
---|---|
isumltss |
M
, ,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumltss.2 | . . . . 5 | |
2 | isumltss.1 | . . . . . 6 | |
3 | 2 | uzinf 12076 | . . . . 5 |
4 | 1, 3 | syl 16 | . . . 4 |
5 | ssdif0 3885 | . . . . 5 | |
6 | isumltss.4 | . . . . . 6 | |
7 | eqss 3518 | . . . . . . 7 | |
8 | isumltss.3 | . . . . . . . 8 | |
9 | eleq1 2529 | . . . . . . . 8 | |
10 | 8, 9 | syl5ibcom 220 | . . . . . . 7 |
11 | 7, 10 | syl5bir 218 | . . . . . 6 |
12 | 6, 11 | mpand 675 | . . . . 5 |
13 | 5, 12 | syl5bir 218 | . . . 4 |
14 | 4, 13 | mtod 177 | . . 3 |
15 | neq0 3795 | . . 3 | |
16 | 14, 15 | sylib 196 | . 2 |
17 | 8 | adantr 465 | . . . 4 |
18 | 6 | adantr 465 | . . . . . 6 |
19 | 18 | sselda 3503 | . . . . 5 |
20 | isumltss.6 | . . . . . . 7 | |
21 | 20 | adantlr 714 | . . . . . 6 |
22 | 21 | rpred 11285 | . . . . 5 |
23 | 19, 22 | syldan 470 | . . . 4 |
24 | 17, 23 | fsumrecl 13556 | . . 3 |
25 | snfi 7616 | . . . . 5 | |
26 | unfi 7807 | . . . . 5 | |
27 | 17, 25, 26 | sylancl 662 | . . . 4 |
28 | eldifi 3625 | . . . . . . . . 9 | |
29 | 28 | snssd 4175 | . . . . . . . 8 |
30 | 6, 29 | anim12i 566 | . . . . . . 7 |
31 | unss 3677 | . . . . . . 7 | |
32 | 30, 31 | sylib 196 | . . . . . 6 |
33 | 32 | sselda 3503 | . . . . 5 |
34 | 33, 22 | syldan 470 | . . . 4 |
35 | 27, 34 | fsumrecl 13556 | . . 3 |
36 | 1 | adantr 465 | . . . 4 |
37 | isumltss.5 | . . . . 5 | |
38 | 37 | adantlr 714 | . . . 4 |
39 | isumltss.7 | . . . . 5 | |
40 | 39 | adantr 465 | . . . 4 |
41 | 2, 36, 38, 22, 40 | isumrecl 13580 | . . 3 |
42 | 25 | a1i 11 | . . . . . 6 |
43 | vex 3112 | . . . . . . . 8 | |
44 | 43 | snnz 4148 | . . . . . . 7 |
45 | 44 | a1i 11 | . . . . . 6 |
46 | 29 | adantl 466 | . . . . . . . 8 |
47 | 46 | sselda 3503 | . . . . . . 7 |
48 | 47, 21 | syldan 470 | . . . . . 6 |
49 | 42, 45, 48 | fsumrpcl 13559 | . . . . 5 |
50 | 24, 49 | ltaddrpd 11314 | . . . 4 |
51 | eldifn 3626 | . . . . . . 7 | |
52 | 51 | adantl 466 | . . . . . 6 |
53 | disjsn 4090 | . . . . . 6 | |
54 | 52, 53 | sylibr 212 | . . . . 5 |
55 | eqidd 2458 | . . . . 5 | |
56 | 21 | rpcnd 11287 | . . . . . 6 |
57 | 33, 56 | syldan 470 | . . . . 5 |
58 | 54, 55, 27, 57 | fsumsplit 13562 | . . . 4 |
59 | 50, 58 | breqtrrd 4478 | . . 3 |
60 | 21 | rpge0d 11289 | . . . 4 |
61 | 2, 36, 27, 32, 38, 22, 60, 40 | isumless 13657 | . . 3 |
62 | 24, 35, 41, 59, 61 | ltletrd 9763 | . 2 |
63 | 16, 62 | exlimddv 1726 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 = wceq 1395 E. wex 1612
e. wcel 1818 =/= wne 2652 \ cdif 3472
u. cun 3473 i^i cin 3474 C_ wss 3475
c0 3784 { csn 4029 class class class wbr 4452
dom cdm 5004 ` cfv 5593 (class class class)co 6296
cfn 7536 cc 9511 cr 9512 caddc 9516 clt 9649 cz 10889 cuz 11110
crp 11249
seq cseq 12107
cli 13307 sum_ csu 13508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-er 7330 df-pm 7442 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-oi 7956 df-card 8341 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-fz 11702 df-fzo 11825 df-fl 11929 df-seq 12108 df-exp 12167 df-hash 12406 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-clim 13311 df-rlim 13312 df-sum 13509 |
Copyright terms: Public domain | W3C validator |