Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isumsplit | Unicode version |
Description: Split off the first terms of an infinite sum. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 24-Apr-2014.) |
Ref | Expression |
---|---|
isumsplit.1 | |
isumsplit.2 | |
isumsplit.3 | |
isumsplit.4 | |
isumsplit.5 | |
isumsplit.6 |
Ref | Expression |
---|---|
isumsplit |
M
, , ,N
,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumsplit.1 | . 2 | |
2 | isumsplit.3 | . . . 4 | |
3 | 2, 1 | syl6eleq 2555 | . . 3 |
4 | eluzel2 11115 | . . 3 | |
5 | 3, 4 | syl 16 | . 2 |
6 | isumsplit.4 | . 2 | |
7 | isumsplit.5 | . 2 | |
8 | isumsplit.2 | . . 3 | |
9 | eluzelz 11119 | . . . 4 | |
10 | 3, 9 | syl 16 | . . 3 |
11 | uzss 11130 | . . . . . . . 8 | |
12 | 3, 11 | syl 16 | . . . . . . 7 |
13 | 12, 8, 1 | 3sstr4g 3544 | . . . . . 6 |
14 | 13 | sselda 3503 | . . . . 5 |
15 | 14, 6 | syldan 470 | . . . 4 |
16 | 14, 7 | syldan 470 | . . . 4 |
17 | isumsplit.6 | . . . . 5 | |
18 | 6, 7 | eqeltrd 2545 | . . . . . 6 |
19 | 1, 2, 18 | iserex 13479 | . . . . 5 |
20 | 17, 19 | mpbid 210 | . . . 4 |
21 | 8, 10, 15, 16, 20 | isumclim2 13573 | . . 3 |
22 | fzfid 12083 | . . . 4 | |
23 | elfzuz 11713 | . . . . . 6 | |
24 | 23, 1 | syl6eleqr 2556 | . . . . 5 |
25 | 24, 7 | sylan2 474 | . . . 4 |
26 | 22, 25 | fsumcl 13555 | . . 3 |
27 | 14, 18 | syldan 470 | . . . . 5 |
28 | 8, 10, 27 | serf 12135 | . . . 4 |
29 | 28 | ffvelrnda 6031 | . . 3 |
30 | 5 | zred 10994 | . . . . . . . . . . . 12 |
31 | 30 | ltm1d 10503 | . . . . . . . . . . 11 |
32 | peano2zm 10932 | . . . . . . . . . . . . 13 | |
33 | 5, 32 | syl 16 | . . . . . . . . . . . 12 |
34 | fzn 11731 | . . . . . . . . . . . 12 | |
35 | 5, 33, 34 | syl2anc 661 | . . . . . . . . . . 11 |
36 | 31, 35 | mpbid 210 | . . . . . . . . . 10 |
37 | 36 | sumeq1d 13523 | . . . . . . . . 9 |
38 | 37 | adantr 465 | . . . . . . . 8 |
39 | sum0 13543 | . . . . . . . 8 | |
40 | 38, 39 | syl6eq 2514 | . . . . . . 7 |
41 | 40 | oveq1d 6311 | . . . . . 6 |
42 | 13 | sselda 3503 | . . . . . . . 8 |
43 | 1, 5, 18 | serf 12135 | . . . . . . . . 9 |
44 | 43 | ffvelrnda 6031 | . . . . . . . 8 |
45 | 42, 44 | syldan 470 | . . . . . . 7 |
46 | 45 | addid2d 9802 | . . . . . 6 |
47 | 41, 46 | eqtr2d 2499 | . . . . 5 |
48 | oveq1 6303 | . . . . . . . . 9 | |
49 | 48 | oveq2d 6312 | . . . . . . . 8 |
50 | 49 | sumeq1d 13523 | . . . . . . 7 |
51 | seqeq1 12110 | . . . . . . . 8 | |
52 | 51 | fveq1d 5873 | . . . . . . 7 |
53 | 50, 52 | oveq12d 6314 | . . . . . 6 |
54 | 53 | eqeq2d 2471 | . . . . 5 |
55 | 47, 54 | syl5ibrcom 222 | . . . 4 |
56 | addcl 9595 | . . . . . . . 8 | |
57 | 56 | adantl 466 | . . . . . . 7 |
58 | addass 9600 | . . . . . . . 8 | |
59 | 58 | adantl 466 | . . . . . . 7 |
60 | simplr 755 | . . . . . . . 8 | |
61 | simpll 753 | . . . . . . . . . . 11 | |
62 | 10 | zcnd 10995 | . . . . . . . . . . . . 13 |
63 | ax-1cn 9571 | . . . . . . . . . . . . 13 | |
64 | npcan 9852 | . . . . . . . . . . . . 13 | |
65 | 62, 63, 64 | sylancl 662 | . . . . . . . . . . . 12 |
66 | 65 | eqcomd 2465 | . . . . . . . . . . 11 |
67 | 61, 66 | syl 16 | . . . . . . . . . 10 |
68 | 67 | fveq2d 5875 | . . . . . . . . 9 |
69 | 8, 68 | syl5eq 2510 | . . . . . . . 8 |
70 | 60, 69 | eleqtrd 2547 | . . . . . . 7 |
71 | 5 | adantr 465 | . . . . . . . 8 |
72 | eluzp1m1 11133 | . . . . . . . 8 | |
73 | 71, 72 | sylan 471 | . . . . . . 7 |
74 | elfzuz 11713 | . . . . . . . . 9 | |
75 | 74, 1 | syl6eleqr 2556 | . . . . . . . 8 |
76 | 61, 75, 18 | syl2an 477 | . . . . . . 7 |
77 | 57, 59, 70, 73, 76 | seqsplit 12140 | . . . . . 6 |
78 | 61, 24, 6 | syl2an 477 | . . . . . . . 8 |
79 | 61, 24, 7 | syl2an 477 | . . . . . . . 8 |
80 | 78, 73, 79 | fsumser 13552 | . . . . . . 7 |
81 | 67 | seqeq1d 12113 | . . . . . . . 8 |
82 | 81 | fveq1d 5873 | . . . . . . 7 |
83 | 80, 82 | oveq12d 6314 | . . . . . 6 |
84 | 77, 83 | eqtr4d 2501 | . . . . 5 |
85 | 84 | ex 434 | . . . 4 |
86 | uzp1 11143 | . . . . . 6 | |
87 | 3, 86 | syl 16 | . . . . 5 |
88 | 87 | adantr 465 | . . . 4 |
89 | 55, 85, 88 | mpjaod 381 | . . 3 |
90 | 8, 10, 21, 26, 17, 29, 89 | climaddc2 13458 | . 2 |
91 | 1, 5, 6, 7, 90 | isumclim 13572 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
\/ wo 368 /\ wa 369 /\ w3a 973
= wceq 1395 e. wcel 1818 C_ wss 3475
c0 3784 class class class wbr 4452
dom cdm 5004 ` cfv 5593 (class class class)co 6296
cc 9511 0 cc0 9513 1 c1 9514
caddc 9516 clt 9649 cmin 9828 cz 10889 cuz 11110
cfz 11701 seq cseq 12107 cli 13307 sum_ csu 13508 |
This theorem is referenced by: isum1p 13653 geolim2 13680 mertenslem2 13694 mertens 13695 effsumlt 13846 eirrlem 13937 rpnnen2lem8 13955 prmreclem6 14439 aaliou3lem7 22745 abelthlem7 22833 log2tlbnd 23276 subfaclim 28632 binomcxplemnn0 31254 stirlinglem12 31867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-oi 7956 df-card 8341 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-fz 11702 df-fzo 11825 df-seq 12108 df-exp 12167 df-hash 12406 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-clim 13311 df-sum 13509 |
Copyright terms: Public domain | W3C validator |